Model Question

Bachelor of Computer Applications (BCA)

Year / Semester: First / I

Subject: Digital Logic (CACS105)

 Time: 3 Hrs. (Group A, 20 Minutes and Group B & C, 2:40 Hrs.)
 FM: 60

Group – A

Attempt all the questions	[10 x 1]
Circle (\bigcirc) the correct answer in the following questions.	
1. Which one of the following is binary equivalent of $(9C)_{16}$?	

	a)	10101100	b)	10011010	
	c)	10011100	d)	10011000	
2.	Which one of the following is 2's complement of $(10001001)_2$?				
	a)	01101110	b)	01110111	
	c)	01110110	d)	01011110	
3.	Which one of the following gate's output is 0 only when there is at least one 0 at the input?				
	a)	NAND	b)	AND	
	c)	OR	d)	XNOR	
4.	. What is the value of $x + yz$ using distributive law of Boolean algebra?				
	a)	(x+y)(x+z)	b)	x(y+z)	
	c)	xy+xz	d)	y(x+z)	
5.	Which one of the following is correct solution of F (A, B) = $\Sigma(m2, m3)$?				
	a)	A	b)	В	
	c)	A'	d)	Β'	
6.	5. How many select lines will be required for an 8-line-to-1-line multiplexer?				
	a)	1	b)	2	
	c)	3	d)	4	
7.	7. What are the excitation values of J and K when Q (t) = 0 and Q (t+1) = 1 in JK flip-flop?				
	a)	0 and X	b)	X and 1	
	c)	1 and X	d)	X and 0	
8.	3. How many clock pulse it takes to store 4 bit of binary information in a shift register in serial mode?				
	a)	1	b)	2	
	c)	3	d)	4	
9.	9. How many flip-flops are required to make a MOD –8 counter?				
	a)	4	b)	3	
	c)	2	d)	5	
10	10. How many inputs will a decimal – to – BCD encoder have?				
	a)	4	b)	8	
	c)	10	d)	16	

Group – B

Attempt any SIX questions.

- 1. Define Digital signal. Explain the Digital Logic and Operations. [1 + 4]
- 2. What are Logic gates? Write the functional expression, digital symbol, truth table and Venn diagram for NOR and XOR gate. [1 + 4]
- 3. State and prove the Demorgan's Theorem using truth table.
- 4. Simplify following expression using K-map method: [5] $F(A, B, C, D) = \Sigma m (3, 4, 6, 8, 10, 15) + D (0, 2, 7, 14).$
- 5. Define combinational circuit. Explain the operation of BCD to Decimal decoder with Circuit diagram and Truth table. [1 + 4]
- 6. Define sequential circuit. Draw a logic diagram, graphic symbol, characteristic table, and characteristic equation of clocked JK flip-flop. [1 + 1 + 1 + 1 + 1]
- 7. Define register. Explain the working principle of Serial In Serial Out (SISO) register. [1+4]

Group – C

Attempt any TWO questions.

- a) What is Multiplexer? Design 8 to 1 mux using 4 to 1 mux. [1+4]
 b) Write the Functional expression, Logic symbol and truth table for Full Adder. [1+2+2]
- 2. Define Canonical and standard forms. Realize the Basic gates using NAND and NOR gate. [2+4+4]
- 3. What is counter? Design the MOD 10 synchronous counter showing its circuit, state and timing diagram. [1 + 3 + 3 + 3]

 $[2 \times 10 = 20]$