
Digital Logic 

© Mr. Bishwo Prakash Pokharel Page 1 

 

Unit 1:  Binary Systems  

 

1.1 Digital Systems 

 1.1.1 Digital and Analog system 

Analog System: 
The system which can process analog quantities (Continuous data) is called an analog 
system. Analog system is operated by measuring rather than counting. These systems are 
used in scientific work, commercial and personal purpose. For example, Odometer, 
Speedometer, thermometer, seismograph, voltmeter, ammeter, pressure gauge etc. 
Characteristics of analog system:  
i. Based on continuous varying data 
ii. Measure only natural or physical values. 
iii. Used for special purpose 
iv. Generally, no storage facility is available because they work on real time basis. 
v. Accuracy of these types of computer is very less because of noise and filtering 

facility. 
vi. Output of those signals is not well known by general public because they are in form 

of wave lines, curved lines or graphs. 
 
Digital System: 
The system which works on discrete data (discontinuous data, binary system or 0 and 1) is 
known as digital system. Binary system is such system of numbering in which only 2 digits 
are used 0 and 1. Where 0 represents either OFF, False, No etc. and 1 represents ON, True, 
Yes etc. So the basic principle of this system is either present or absence of electrical pulses 
in the signal. For example, IBM PC, Apple/Macintosh, IBM Compactible etc.   
Characteristics of digital system: 
i. Based on discrete data which are not continuous with time.  
ii. Based on principle of logic 1 and 0 (high and low voltage). 
iii. Used for general purpose. 
iv. They are more reliable because of less noise and filtering facility. 
v. It has large memory capacity because the calculations are to be stored internally for 

future use and re-programming. 
vi. It is multipurpose and programmable. So, it is of high cost and faster processing. 

 
Difference between Analog and Digital Systems 

S.No. Analog  S.No. Digital 

1 These systems work with natural or 
physical values. 

1 These systems work with digits. 

2 It works upon continuous data. 2 It works upon discrete data. 

3 It operates by measuring and comparing. 3 It operates by counting and adding i.e. 
it calculates. 

4 Its accuracy is low. 4 Its accuracy is high. 

5 Output is continuous. 5 Results are obtained after complete 
computation. 

6 It is special purpose in nature. 6 It is general purpose in nature. 

7 No any or smaller storage capacity. 7 Larger storage capacity (memory). 

8 Lower cost compared to digital systems. 8 Higher cost compared to analog 
systems. 

9 Normally, it cannot be reprogrammed. 9 It can be reprogrammed. 

10 For example: Plessey, odometer, 
speedometer etc. 

10 For example: IBM PC, IBM Compatible 
and other desktop computers. 
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 1.1.2 Block diagram of digital computer 

 
a. Data normally flows from input devices or backing storage into main storage and from main 

storage to output devices or backing storage.  
b. The processor performs operations on data from main storage and returns the results of 

processing to main storage.  
c. In some cases, data flows directly between the processor and input or output devices rather 

than as described in (a). 
d. The ALU and CU, combine to form the processor. The processor is sometimes also called the 

central processor or central processing unit (CPU). However, the term CPU is also sometimes 
taken to mean not only the ALU and Control unit but main storage too.  

e. There are two types of flow. Solid lines carry data or instructions and dotted line carry 
commands or signals. 

f. Data held on secondary storage may be input to main memory during processing, used and 
brought up-to-date using newly input data, and then returned to backing storage.  

 

 1.1.3 Advantages/disadvantages of digital system 

Advantages of digital system:  

 Have made possible many scientific, industrial, and commercial advances that would have 
been unattainable otherwise.  

 Less expensive  

 More reliable  

 Easy to manipulate  

 Flexibility and Compatibility  

 Information storage can be easier in digital computer systems than in analog ones. New 
features can often be added to a digital system more easily too.  
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Disadvantages of digital system:  

 Use more energy than analog circuits to accomplish the same tasks, thus producing more 
heat as well.  

 Digital circuits are often fragile, in that if a single piece of digital data is lost or 
misinterpreted, the meaning of large blocks of related data can completely change.  

 Digital computer manipulates discrete elements of information by means of a binary code.  

 Quantization error during analog signal sampling.  
 

1.2 Binary Numbers 

1.2.1 Number System 

 Introduction: 

 In early days, people used stones, pebbles, sticks and different symbols to represent values. 
Such counting items were not suitable to represent big values. So, mathematicians have developed 
different types of number systems to represent values and perform complex calculations. The main 
difference of the different number system is their base number.  
 
Base or Radix: 

The base or radix of a number system is defined as the number of digits used to represent 
the number system. For example decimal number system uses ten digits (0,1,2,3,4,5,6,7,8,9) so its 
base is 10. 

 
The different number systems are that we use in our daily life and in computer system are 

categorized into the following types depending upon the base: 
i. Decimal or Denary number system 
ii. Binary number system 
iii. Octal number system 
iv. Hexadecimal number system 

 
1. Decimal or Denary Number System: 

The decimal number system is the most popular number system that we use in our daily life 
for representing values and performing different calculations. It is base ten number system. 
It consists of digits from 0 to 9. The other numbers in the decimal number system are 
formed by combining two or more digits. For example: 23, 121, 2628, 7812 etc.  
 
 
 

2. Binary Number System: 
The binary number system is the base two number system. It has just two digits: 0 and 1. 
Each digit in binary number system is known as BIT (Binary Digit). Other numbers in this 
system are formed by combining these two digits more than ones like 11, 110, 1101, 11101 
etc. Each position in a binary number represents a power of the base. Numbers in the binary 
number system are read digit by digit. For example, binary number 100 is read as one zero 
zero and 101 is read as one zero one. It is subscripted by 2 or B. For example, (101)2 or 
(101)B. 
 

3. Octal Number System: 
Octal number system is the base eight number system. The digits used in this number 
system are the numbers from 0 to 7. The largest digit of octal number system is 7. Other 
numbers are formed by combining one or more digits of octal number system. Each position 
in an octal number represents a power of the base. It is subscripted by 8 or O. For example, 
(126)8 or (126)O.  
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4. Hexadecimal Number System: 
Hexadecimal number is the base sixteen number system. The digits of the hexadecimal 
number system are numbers from 0 to 9 and symbols (A to F). The six alphabets A, B, C, D, E 
and F represent the decimal numbers 10, 11, 12, 13, 14 and 15 respectively. The largest 
single digit if F in this number system. Other numbers are formed by combining digits of 
hexadecimal number like 108, AB5, 3D9 and 3E4B. It is subscripted by 16 or H. For example, 
(A26)16 or (A26)H.  
 

1.2.2 Number conversion: 
1. Decimal to Binary 

a. Divide the given number by 2 
b. Write the quotient under the number. This now becomes the new number. 
c. Write the remainder in right side. 
d. Repeat step (a) to (c) until 0 is produced as the new number. 
e. The 1's and 0's written as remainder in reverse order (i.e. bottom to top) is the required 

binary number. 
For example: (24)10 = (?)2 

Therefore, (24)10=(11000)2 
Fractional decimal to binary 
a. Multiply the fractional part by 2. The result contains an integer part and fractional 

part.  
b. Write the integer number and the fractional number in their respective column. 
c. Now, the fractional part becomes new fraction. 
d. Repeat step (a) to (c) until the fractional part becomes 0 or the desired place after 

decimal is obtained. 
e. The 1's or 0's written in integer part from top to bottom is the required fractional 

binary number.  
 
For example: (0.625)10=(?)2 

Fractional Decimal Operation Product Fractional part Integer part 

0.625 Multiply by 2 1.250 0.250 1 

0.250 Multiply by 2 0.500 0.500 0 

0.500 Multiply by 2 1.000 0.000 1 

Hence (0.625)10=(0.101)2 

2. Decimal to Octal 
a. Divide the given number by 8 
b. Write the quotient under the number. Now it becomes new number.  
c. Write the remainder in right side. 
d. Repeat steps (a) to (c) until 0 is produced as the new number. 
e. The number written as remainder in reverse order (i.e. bottom to top) is the required 

octal number. 
For example: (405)10=(?)8 
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 Therefore (405)10=(625)8 
Fractional decimal to octal 

a. Multiply the fractional part by 8. The result contains an integer part and fractional part.  
b. Write the integer number and the fractional number in their respective column. 
c. Now, the fractional part becomes new fraction. 
d. Repeat step (a) to (c) until the fractional part becomes 0 or the desired place after 

decimal is obtained. 
e. The numbers in the integer part from top to bottom is the required fractional octal 

number.  
For example: (0.0625)10=(?)8 

Fractional Decimal Operation Product Fractional part Integer part 

0.0625 Multiply by 8 0.5 0.5 0 

0.5 Multiply by 8 4.0 0.0 4 

Hence (0.0625)10=(0.04)8 

3. Decimal to Hexadecimal 
a. Divide the given number by 16 
b. Write the quotient under the number. Now it becomes new number.  
c. Write the remainder in right side. 
d. Repeat steps (a) to (c) until 0 is produced as the new number. 
e. The number written as remainder in reverse order (i.e. bottom to top) is the required 

octal number. 
For example: (495)10=(?)16 

 Therefore, (495)10=(1EF)16 
Fractional Decimal to Hexadecimal 
a. Multiply the fractional part by 16. The result contains an integer part and fractional part.  
b. Write the integer number and the fractional number in their respective column. 
c. Now, the fractional part becomes new fraction. 
d. Repeat step (a) to (c) until the fractional part becomes 0 or the desired place after 

decimal is obtained. 
e. The numbers in the integer part from top to bottom is the required fractional 

hexadecimal number.  
For example: (0.62)10=(?)16 

Fractional Decimal Operation Product Fractional part Integer part 

0.62 Multiply by 16 9.92 0.92 9 

0.92 Multiply by 16 14.72 0.72 14=E 

0.72 Multiply by 16 11.52 0.52 11=B 

Hence (0.62)10=(0.9EB…)16 
4. Binary to Decimal 

a. Write binary digits as power of 2 increasing from right to left starting from 0. 
b. Convert each power of two into its decimal equivalent term. 
c. Add these terms to give the decimal number. 

For example: (1110)2 = (?)10 
 11102 = 1x23+1x22+1x21+0x20 
  = 8 + 4 + 2 + 0 
  = 14 
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 Hence (1110)2 = (14)10 

Fractional Binary to Decimal 
a. Write the binary numbers as the negative powers of 2 from left to right starting 

from point as -1, -2 and so on.  
b. Convert each power of 2 into its decimal equivalent. 
c. Add all decimal equivalent numbers. 

For example: (0.001)2 = (?)10 
 0.0012 = 0x2-1+0x2-2+1x2-3 
  = 0+0+1/8 
  = 0.125 
 Hence, (0.001)2 = (0.125)10 

5. Octal to Decimal 
a. Write octal digits as power of 8 increasing from right to left starting from 0. 
b. Convert each power of 8 into its decimal equivalent term. 
c. Add these terms to give the decimal number. 
For example: (521)8 = (?)10 
 5218 = 5x82+2x81+1x80 
  = 320 + 16 + 1 
  = 337 
 Hence (521)8 = (337)10 

 

Fractional Octal to Decimal 
a. Write the octal numbers as the negative powers of 8 from left to right starting 

from point as -1, -2 and so on.  
b. Convert each power of 8 into its decimal equivalent. 
c. Add all decimal equivalent numbers. 
For example: (127.54)8 = (?)10 
 127.548 = 1x82+2x81+7x80+5x8-1+4x8-2 
  = 64+16+7+0.625+0.0625 
  = 87.6875 
 Hence, (127.54)8 = (87.6875)10 

 

6. Hexadecimal to Decimal 
a. Write hexadecimal digits as power of 16 increasing from right to left starting from 0. 
b. Convert each power of 16 into its decimal equivalent term. 
c. Add these terms to give the decimal number. 
For example: (345)16 = (?)10 
 34516 = 3x162+4x161+5x160 
  = 768 + 64 + 5 
  = 837 
 Hence (345)16 = (837)10 

Fractional Hexadecimal to Decimal 
a. Write the hexadecimal numbers as the negative powers of 16 from left to right 

starting from point as -1, -2 and so on.  
b. Convert each power of 16 into its decimal equivalent. 
c. Add all decimal equivalent numbers. 
For example: (2B.C4)16 = (?)10 
 2B.C416 = 2x161+11x160+12x16-1+4x16-2 
  = 32+11+0.75+0.015625 
  = 43.765625 
 Hence, (2B.C4)16 = (43.765625)10 

7. Binary to Octal 
Method-I 
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a. Separate the given binary number into group of three bits (from right to left, add 0 
in the left most side if required). 

b. Replace each group by its decimal equivalent. 
For example: (10111)2 = (?)8 

 Now grouping into group of 3 bits i.e. 010 and 111 
 
 Now converting these sets into its octal equivalent. 
 0102 = 0x22+1x21+0x20   1112=1x22+1x21+1x20 
  = 0 + 2 + 0     = 4+2+1 
  = 2      = 7 
 Replacing each group by its octal equivalent. 
 Hence, (10111)2= (27)8 
Method-II 
a. Convert given binary number in to decimal. 
b. Again convert this decimal number to octal number. 

 
8. Octal to Binary 

Method-I 
a. Take each digit individually, assuming it to be a decimal digit. 
b. Convert it into binary and place it in the combination of 3 bit each. 

For example: (27)8 = (?)2 
 Converting each digit individually to its' binary equivalent. 
 2= 010   7 = 111 
 Placing it in its order (27)8 = (010111)2 
Method-II 
a. Convert octal number to decimal equivalent. 
b. Again convert the obtained decimal into binary. 

 
9. Binary to Hexadecimal 

Method-I 
a. Separate the given number into group of 4 bits (from right to left, add 0 in the left most 

side if required). 
b. Replace each group by its hexadecimal equivalent. 

For example: (11011110111)2=(?)16 
 Grouping binary digits in groups of 4 bits  
 0110  1111  0111 
Now converting each group to its decimal equivalent and then to its hexadecimal 
equivalent. 
(0110)2 = (6)10 = (6)16 
(1111)2 = (15)10 = (F)16 
(0111)2 = (7)10 = (7)16 
Replacing each group by its hexadecimal equivalent. 
Hence, (11011110111)2 = (6F7)16 

 Method-II 
a. Convert binary to decimal. 
b. Then, convert decimal to hexadecimal. 

 
10. Hexadecimal to Binary 

Method-I 
a. Take each digit individually 
b. Convert it into binary and place it in the combination of 4 bit each. 

For example: (6F7)16 = (?)2 
Converting each digit individually to its' binary equivalent 
6 = 0110  F=1111  7 = 0111 
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 Placing it in its order (6F7)16 = (011011110111)2 
Method-II 
a. Convert hexadecimal number to decimal number. 
b. Again convert the obtained decimal into binary. 

 
 

11. Octal to Hexadecimal 
Method-I 

 Convert the octal to decimal then convert decimal to hexadecimal 
 Method-II 
 Convert the octal to binary then convert binary to hexadecimal. 
 

12. Hexadecimal to Octal 
Method-I 
Convert hexadecimal to decimal then to octal. 
 
Method-II 
Convert hexadecimal to binary then to octal. 

 
Binary Arithmetic: 
 Arithmetic operation with binary number or any number with base r follow the same rules 
as for decimal numbers. Because binary number system is also the positional number system, the 
rules for the positional number apply to the binary numbers also.  

1. Binary Addition: 
As with decimal addition, to add two binary numbers we need to add two corresponding bits 
from the two numbers at a time. Following are the rules for binary addition: 
0+0=0  0+1=1  1+0=1  1+1=10 (with sum 0 and carry 1) 
 
For example: 
  0 1 1 1 1 
  1 0 1 1 0 1 
          +  0 0 1 1 1 1 
  1 1 1 1 0 0 

    
     2. Binary Subtraction: 
 Similar to decimal subtraction, to subtract a binary numbers from other we need to subtract 

a corresponding bit from other. Following are the rules for binary subtraction: 
 1-1=0  1-0=1  0-1=1 (with borrowing 1) 0-0=0 
  
For example: 

  0 0 1 1 0 
  1 1 1 0 0 1 
          -  0 1 0 0 1 0 

1 0 0 1 1 1 
 
       3. Binary Multiplication: 

Following are the rules for binary multiplication: 
1x1=1  1x0=0  0x1=0  0x0=0 
For example: 
   1 0 1 1 
                x 1 0 1 1 
   1 0 1 1 
  1 0 1 1 X 
 0 0 0 0 X X 

carry 

sum 

difference 

borrow 
Minuend 

subtrahend 

multiplicand 

multiplier 
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1 0 1 1 X X X 
1 1 1 1 0 0 1 
 
4. Binary Division: 
Following are the rules for binary division: 
 1÷1=1  1÷0=not defined 0÷1=0  0÷0=not defined 
 
For example: 
Divide 101011 by 110 
  110)101011(111 quotient 
             - 110 
            1001 

        -   110 
   111 
 - 110 
       1            remainder 

 
 
1.2.3 Subtraction using complement method: 
Complement: 
 In computer system, subtraction is not performed directly as arithmetic subtraction. It is 
performed by the technique called complement. It is the process of repeated addition. 
 
 There are two types of complements: 
 i. r's complement  ii. (r-1)'s complement 
 Where, r is the base of a number system. In binary number system, there are two types of 
complements 2's complement and 1's complement. Similarly, decimal number system has 10's and 
9's complement. 

1. 9's complement: 
The 9's complement of decimal number can be obtained by subtracting each digit of the 
number from 9.  
For example: 9's complement of 3 is: (9-3)=6 
And, 9's complement of 234 is: (999-234)=765 

2. 10's complement: 
The 10's complement of decimal number can be obtained by adding 1 to the least significant 
digit of 9's complement of that number.  
For example: 10's complement of 3 is 7 (9-3=6+1=7) 
And, 10's complement of 123 is 877 (999-123=876+1=877) 

3. 1's complement: 
1's complement of binary number is obtained by subtracting each bit by 1. We can get 
complement by simply replacing 1 by 0 and 0 by 1. 
For example: 1's complement of 1011 = 0100 

4. 2's complement: 
2's complement of a binary number is obtained by adding binary 1 to the 1's complement of 
the number. 
For example: 2's complement of 1101101 is: 
  1's complement of 1101101 = 0010010 
  2's complement of 1101101 = 0010010+1=0010011 

Subtraction of decimal numbers by using 9's complement: 
Steps: 

a. Make the both number having same number of digits. 
b. Determine the 9's complement of the number to be subtracted (subtrahend). 
c. Add the 9's complement to the given number from which we subtract (minuend). 

Product 
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d. If there exists' any additional digit (carry) in the result after addition, remove it and add it to 
the remaining digits to find the final result. If there exists' no any carry then determine the 
9's complement of the result and prefix by negative sign to get the final result. 
i) Subtracting smaller number from greater number. 
For example: Subtract (123)10 from (345)10 
Solution: 
 9's complement of 123 = (999-123) = 876 
 Adding it with minuend (345)         = + 345 
      1221 
In the result there exist one carry i.e. 1 so, adding this carry to the remaining digit: 
      221 
      +  1 
      222 
Hence, (222)10 is the required result after subtracting (123)10 from (345)10 
ii) Subtracting greater number from smaller number. 
For example: Subtract (345)10 from (123)10 
Solution: 
 9's complement of 345 = (999-345) = 654 
 Adding it with minuend (123)         = + 123 
      777 
In the result there doesn't exist any carry, so calculating 9's complement of the result and 
prefix by negative sign. 
9's complement of 777 = (999-777)=222 
Hence, (-222)10 is the required result after subtracting (345)10 by (123)10 

 
Subtraction of decimal numbers by using 10's complement: 
Steps: 

a. Make the same numbers having same number of digits. 
b. Determine the 10's complement of the number to be subtracted (subtrahend). 
c. Add the 10's complement to the given number from which we subtract (minuend). 
d. If there exists' any additional digit (carry) in the result after addition, remove it from the 

result and the remaining digits form the final result. If there exists' no any carry then 
determine the 10's complement of the result and prefix by negative sign to get the final 
result. 
i) Subtracting smaller number from greater number. 
For example: Subtract (123)10 from (345)10 
Solution: 
 10's complement of 123 = (999-123) = 876+1 = 877 
 Adding it with minuend (345)                      = + 345 
          1222 
In the result there exist one carry i.e. 1 so, removing it to find the result. 
Hence, (222)10 is the required result after subtracting (123)10 from (345)10 
ii) Subtracting greater number from smaller number. 
For example: Subtract (345)10 from (123)10 
Solution: 
 10's complement of 345 = (999-345) = 654+1 = 655 
 Adding it with minuend (123)                      = + 123 
            778 
In the result there doesn't exist any carry, so calculating 10's complement of the result and 
prefix by negative sign. 
10's complement of 778 = (999-778) =221+1 = 222 
Hence, (-222)10 is the required result after subtracting (345)10 by (123)10 

 
Subtraction of binary number using 1's complement: 
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Steps: 
a. Make the both numbers having same number of bits. 
b. Determine the 1's complement of the number to be subtracted (subtrahend). 
c. Add the 1's complement to the given number from which we subtract (minuend). 
d. If there exists' any additional bit (carry) in the result after addition, remove and add it to the 

result. If there exists' no carry determine the 1's complement of the result and prefix by 
negative sign to get the final result. 
i) Subtracting smaller number from greater number. 
For example: Subtract (110000)2 from (111000)2 
Solution: 
  
      1's complement of 110000            = 001111 
 Adding it with minuend (111000)  = + 111000 
      1000111 
In the result there exist one carry i.e. 1 so, adding this carry to the remaining digit: 
      000111 
      +         1 
       001000 
Hence, (001000)2 is the required result after subtracting (110000)2 from (111000)2 
ii) Subtracting greater number from smaller number. 
For example: Subtract (111000)2 from (110000)2 
 
Solution: 
 9's complement of 111000        = 000111 
 Adding it with minuend (110000)         = + 110000 
              110111 
In the result there doesn't exist any carry, so calculating 1's complement of the result and 
prefix by negative sign. 
1's complement of 110111 = 001000 
Hence, (-001000)2 is the required result after subtracting (111000)2 by (110000)2 

Subtraction of binary number using 1's complement: 
Steps: 

a. Make the both numbers having same number of bits. 
b. Determine the 2's complement of the number to be subtracted (subtrahend). 
c. Add the 2's complement to the given number from which we subtract (minuend). 
d. If there exists' any additional bit (carry) in the result after addition, remove and add it to the 

result. If there exists' no carry determine the 2's complement of the result and prefix by 
negative sign to get the final result. 

i) Subtracting smaller number from greater number. 
For example: Subtract (110000)2 from (111000)2 
Solution: 
 1's complement of 110000   =  001111 
 2's complement of 110000  =  001111 
       +1 
          010000 
 Adding it with minuend (111000)     = + 111000 
        1001000 
In the result there exist one carry i.e. 1 so, removing the carry: 
Hence, (001000)2 is the required result after subtracting (110000)2 from (111000)2 

ii) Subtracting greater number from smaller number. 
For example: Subtract (111000)2 from (110000)2 
Solution: 
 1's complement of 111000        = 000111 
 2's complement of 111000       = 000111 
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             +       1 
              001000 

Adding it with minuend (110000)         = + 110000 
              111000 
In the result there doesn't exist any carry, so calculating 2's complement of the result and 
prefix by negative sign. 
 
1's complement of 111000 = 000111 
2's complement of 111000 = 000111 
    +    1 
             001000 
Hence, (-001000)2 is the required result after subtracting (111000)2 by (110000)2 

 

1.3 Binary Codes 
Electronic digital systems use signals that have two distinct values and circuit elements that have 
two stable states. There is a direct analogy among binary signals, binary circuit elements, and 
binary digits. A binary number of n digits, for example, may be represented by n binary circuit 
elements, each having an output signal equivalent to a 0 or a 1. Digital systems represent and 
manipulate not only binary numbers, but also many other discrete elements of information. Any 
discrete element of information distinct among a group of quantities can be represented by a 
binary code. Binary codes play an important role in digital computers. The codes must be in 
binary because computers can only hold 1's and 0's. 
 

       1.3.1 BCD (Binary Coded Decimal) codes: 
 The binary number system is the most natural system for a computer, but people are 

accustomed to the decimal system. So, to resolve this difference, computer uses decimals in 
coded form which the hardware understands. A binary code that distinguishes among 10 
elements of decimal digits must contain at least four bits. Numerous different binary codes can 
be obtained by arranging four bits into 10 distinct combinations. The code most commonly used 
for the decimal digits is the straightforward binary assignment listed in the table below. This is 
called binary-coded decimal and is commonly referred to as BCD. 

Decimal BCD 

0 0000 

1 0001 

2 0010 

3 0011 

4 0100 

5 0101 

6 0110 

7 0111 

8 1000 

9 1001 

 

 A number with n decimal digits will require 4n bits in BCD. E.g. decimal 396 is represented in 
BCD with 12 bits as 0011 1001 0110.  

 Numbers greater than 9 has a representation different from its equivalent binary number, 
even though both contain 1's and 0's.  

 Binary combinations 1010 through 1111 are not used and have no meaning in the BCD code.  

 Example: (185)10 = (0001 1000 0101)BCD = (10111001)2 
 

1.3.2 Error-detection codes: 
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Binary information can be transmitted from one location to another by electric wires or other 
communication medium. Any external noise introduced into the physical communication 
medium may change some of the bits from 0 to 1 or vice versa.  
 
The purpose of an error-detection code is to detect such bit-reversal errors. One of the most 
common ways to achieve error detection is by means of a parity bit. A parity bit is the extra bit 
included to make the total number of 1's in the resulting code word either even or odd. A 
message of 4-bits and a parity bit P are shown in the table below: 

Odd Parity Even Parity 

Message P Message P 

0000 1 0000 0 

0001 0 0001 1 

0010 0 0010 1 

0011 1 0011 0 

0100 0 0100 1 

0101 1 0101 0 

0110 1 0110 0 

0111 0 0111 1 

1000 0 1000 1 

1001 1 1001 0 

1010 1 1010 0 

1011 0 1011 1 

1100 1 1100 0 

1101 0 1101 1 

1110 0 1110 1 

1111 1 1111 0 

Error Checking Mechanism:  

 During the transmission of information from one location to another, an even parity bit 
is generated in the sending end for each message transmission. The message, together 
with the parity bit, is transmitted to its destination. The parity of the received data is 
checked in the receiving end. If the parity of the received information is not even, it 
means that at least one bit has changed value during the transmission. 

 This method detects one, three, or any odd combination of errors in each message that 
is transmitted. An even combination of errors is undetected. Additional error-detection 
schemes may be needed to take care of an even combination of errors. 

1.3.3 Reflected code (Gray Code) 
It is a binary coding scheme used to represent digits generated from a mechanical sensor that 
may be prone to error. Used in telegraphy in the late 1800s, and also known as "reflected binary 
code”. Gray code was patented by Bell Labs researcher Frank Gray in 1947. In Gray code, there is 
only one bit location different between two successive values, which make mechanical 
transitions from one digit to the next less error prone. The following chart shows normal binary 
representations from 0 to 15 and the corresponding Gray code. 

Decimal digit   Binary code   Gray code 
0   0000    0000 
1    0001    0001 
2    0010    0011 
3    0011    0010 
4    0100    0110 
5    0101    0111 
6    0110    0101 
7    0111    0100 
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8    1000    1100 
9    1001    1101 
10    1010    1111 
11    1011    1110 
12    1100    1010 
13    1101    1011 
14    1110    1001 
15    1111    1000 

The Gray code is used in applications where the normal sequence of binary numbers may 
produce an error or ambiguity during the transition from one number to the next. If binary 
numbers are used, a change from 0111 to 1000 may produce an intermediate erroneous 
number 1001 if the rightmost bit takes more time to change than the other three bits. The Gray 
code eliminates this problem since only one bit changes in value during any transition between 
two numbers. 
 

Binary to gray code conversion 

Binary to gray code conversion is a very simple process. There are several steps to do these types 
of conversions. Steps given below elaborate on the idea on this type of conversion.  

(1) The M.S.B. of the gray code will be exactly equal to the first bit of the given binary number. 
(2) Now the second bit of the code will be exclusive-or of the first and second bit of the given 

binary number, i.e. if both the bits are same the result will be 0 and if they are different the 
result will be 1. 

(3)The third bit of gray code will be equal to the exclusive-or of the second and third bit of the 
given binary number. Thus the Binary to gray code conversion goes on. One example given 
below can make your idea clear on this type of conversion. 

For example: (01001)2 = (?)Gray 

 0  0 

 01  1 

 10  1 

 00  0 

 01 1 

i.e. (01001)2= (1101)Gray 
 
1.3.4 Alphanumeric codes (ASCII, EBCDIC): 
Alphanumeric character set is a set of elements that includes the 10 decimal digits, 26 letters of 
the alphabet and special characters such as $, %, + etc. It is necessary to formulate a binary code 
for this set to handle different data types. If only capital letters are included, we need a binary 
code of at least six bits, and if both uppercase letters and lowercase letters are included, we 
need a binary code of at least seven bits. 
 
ASCII (American Standard Code for Information Interchange): 
The standard binary code for the alphanumeric characters is called ASCII (American Standard 
Code for Information Interchange). It uses seven bits to code 128 characters as shown in the 
table below. The seven bits of the code are designated by B1 through B7 with B7 being the most 
significant bit. 
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Various control character symbolic notation stands for: 

 
 

EBCDIC character code  
EBCDIC (Extended Binary Coded Decimal Interchange Code) is another alphanumeric code used 
in IBM equipment. It uses eight bits for each character. EBCDIC has the same character symbols 
as ASCII, but the bit assignment for characters is different. As the name implies, the binary code 
for the letters and numerals is an extension of the binary-coded decimal (BCD) code. This means 
that the last four bits of the code range from 0000 through 1001 as in BCD. 
 

1.4 Integrated Circuits 
 An Integrated circuit is an association (or connection) of various electronic devices such as 

resistors, capacitors and transistors etched (or fabricated) to a semiconductor material such as 
silicon or germanium. It is also called as a chip or microchip. An IC can function as an amplifier, 
rectifier, oscillator, counter, timer and memory. Sometime ICs are connected to various other 
systems to perform complex functions. 

  
 1.4.1 Concept of DIP, SIMM, linear and digital ICs 
  Types of ICs  

ICs can be categorized into two types  

 Analog or Linear ICs  

 Digital or logic ICs  
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Further there are certain ICs which can perform as a combination of both analog and digital 
functions. 
 

Analog or Linear ICs: They produce continuous output depending on the input signal. From the 
name of the IC we can deduce that the output is a linear function of the input signal. Op-amp 
(operational amplifier) is one of the types of linear ICs which are used in amplifiers, timers and 
counters, oscillators etc.  
 
Digital or Logic ICs: Unlike Analog ICs, Digital ICs never give a continuous output signal. Instead it 
operates only during defined states. Digital ICs are used mostly in microprocessor and various 
memory applications. Logic gates are the building blocks of Digital ICs which operate either at 0 or 
1. 
 

SIP (Single In-line Package) and DIP (Dual In-line Package)  
SIP  

A single in-line package is an electronic device package which has one row of connecting pins. It 
is not as popular as the dual in-line package (DIP) which contains two rows of pins, but has been 
used for packaging RAM chips and multiple resistors with a common pin. SIPs group RAM chips 
together on a small board. The board itself has a single row of pin-leads that resembles a comb 
extending from its bottom edge, which plug into a special socket on a system or system-
expansion board. SIPs are commonly found in memory modules. SIP is not to be confused with 
SIPP which is an archaic term referring to Single In-line Pin Package which was a memory used in 
early computers. 

 
DIP  
Dual in-line package (DIP) is a type of semiconductor component packaging. DIPs can be installed 
either in sockets or permanently soldered into holes extending into the surface of the printed circuit 
board. DIP is relatively broadly defined as any rectangular package with two uniformly spaced 
parallel rows of pins pointing downward, whether it contains an IC chip or some other device(s), and 
whether the pins emerge from the sides of the package and bend downwards. A DIP is usually 
referred to as a DIPn, where n is the total number of pins.  
 
For example, a microcircuit package with two rows of seven vertical leads would be a DIP14. The 
photograph below shows three DIP14 ICs. 

 
Several DIP variants for ICs exist, mostly distinguished by packaging material:  
Ceramic Dual In-line Package (CERDIP or CDIP)  

Plastic Dual In-line Package (PDIP)  

Shrink Plastic Dual In-line Package (SPDIP) -A denser version of the PDIP with a 0.07 in. 
(1.778 mm) lead pitch.  
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Skinny Dual In-line Package (SDIP) – Sometimes used to refer to a 0.3 in. wide DIP, normally 
when clarification is needed e.g. for a 24 or 28 pin DIP.  

 
 
SIMM (Single In-line Memory Module) and DIMM (Dual In-line Memory Module)  
Theses two terms (SIMM and DIMM) refer to a way series of dynamic random access memory 
integrated circuits modules are mounted on a printed circuit board and designed for use in personal 
computers, workstations and servers.  
 
SIMM  

Short for Single In-line Memory Module, SIMM is a circuit board that holds six to nine memory 
chips per board, the ninth chip usually an error checking chip (parity/non parity) and were 
commonly used with Intel Pentium or Pentium compatible motherboards. SIMMs are rarely used 
today and have been widely replaced by DIMMs. SIMMs are available in two flavors: 30 pin and 
72 pin. 30-pin SIMMs are the older standard, and were popular on third and fourth generation 
motherboards. 72-pin SIMMs are used on fourth, fifth and sixth generation PCs. 
 

 

  
 

 
DIMM  

Short for Dual In-line Memory Module, DIMM is a circuit board that holds memory chips. 
DIMMs have a 64-bit path because of the Pentium Processor requirements. Because of the new 
bit path, DIMMs can be installed one at a time, unlike SIMMs on a Pentium that would require 
two to be added. Below is an example image of a 512MB DIMM memory stick. 

 
SO-DIMM is short for Small Outline DIMM and is available as a 72-pin and 144-pin configuration. 

SO-DIMMs are commonly utilized in laptop computers.  
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Some of the advantages DIMMs have over SIMMs:  
DIMMs have separate contacts on each side of the board, thereby providing twice as much 

data as a single SIMM.  

The command address and control signals are buffered on the DIMMs. With heavy memory 
requirements this will reduce the loading effort of the memory.  

 
 1.4.2 Advantage of ICs 
 

 In consumer electronics, ICs have made possible the development of many new products, 
including personal calculators and computers, digital watches, and video games.  

 They have also been used to improve or lower the cost of many existing products, such as 
appliances, televisions, radios, and high-fidelity equipment.  

 The logic and arithmetic functions of a small computer can now be performed on a single 
VLSI chip called a microprocessor.  

 Complete logic, arithmetic, and memory functions of a small computer can be packaged on a 
single printed circuit board, or even on a single chip.  

 
 1.4.3 Scale of integration – SSI, MSI, LSI, VLSI 

During 1959 two different scientists invented IC’s. Jack Kilby from Texas Instruments made his 
first germanium IC during 1959 and Robert Noyce made his first silicon IC during the same year. 
But ICs were not the same since the day of their invention; they have evolved a long way. 
Integrated circuits are often classified by the number of transistors and other electronic 
components they contain:  

 SSI (small-scale integration): Up to 100 electronic components per chip  

 MSI (medium-scale integration): From 100 to 3,000 electronic components per chip  

 LSI (large-scale integration): From 3,000 to 100,000 electronic components per chip  

 VLSI (very large-scale integration): From 100,000 to 1,000,000 electronic components per 
chip  

 ULSI (ultra large-scale integration): More than 1 million electronic components per chip  
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Unit 2:  Boolean Algebra and Logic Gates 

 

2.1 Basic definition of Boolean Algebra 

 2.1.1 Introduction 

 Boolean algebra is algebra of logic, which deals with the study of binary variables and logical 
operations. It was introduced by an English mathematician George Boole. In Boolean algebra the 
variables are permitted to have two values true and false usually written as 1 and 0 respectively. It is 
one of the most basic methods to analyze and design logic circuits. 
 
Boolean Algebra: 
 Boolean algebra also referred to as the algebra of logic. It is a two-valued system of algebra 
that represents logical relationships and operations. The two values used are 1(true) and 0 (false). 
 
Boolean variable: 
 A computer is a binary digital system. Such a system operates on electronic signal, which has 
only two possible states: High or 1 and Low or 0. A signal that does not change its state with time is 
known as constant signal. The value of constant signal always remains same: either 1 or 0 whereas, a 
variable signal changes its state with time. The value of the variable signal may be 1 at some point of 
time and 0 on another. Thus the variables that have only two values 1 and 0 are called Boolean 
variables or logic variables. These variables are denoted by A, B, X, Y etc.  
 
Logic Function (Boolean Function): 
 A logic function is an expression formed by binary variables, binary operators OR, AND, 
unary operator NOT, parenthesis, and equal sign. For a given value of the variables, the function can 
be either 0 or 1. For example: F=X.Y.Z'+X.Y 
 In the above example, X,Y,Z are Boolean variables. The right hand side of the equation is 
known as expression. Each occurrence of a variable or its complement in an expression is called 
literal. In the above expression there are three variables (X,Y,Z) and five literals (X, Y, Z', X, and Y) 
 
Difference between ordinary algebra and Boolean algebra: 

1. Boolean algebra does not have operations equivalent to division and subtraction.  
2. Ordinary algebra deals with real numbers, which contains an infinite number of elements 

(1,2,3…). But Boolean algebra has only a finite set of elements. That is, it deals with only two 
elements 0 and 1. 

3. In Boolean algebra, there is no coefficients or exponents involved, i.e. A+A=A and A.A=A 
4. The distributive law [(A+B).(A+C)]=A+(B.C) does not hold on ordinary algebra. 
5. Unlike in ordinary algebra, there is several graphical method of representing Boolean 

expression.  
 
Truth Table: 
 A table which represents the input/output relationship of the binary variables for each gate 
is called truth table. It shows the relation between all inputs and output in tabular form. Thus a truth 
table is table representing the results of the logical operations on all possible combinations of logical 
values.  
For example: 

Inputs Outputs 

A B X=A+B 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 
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Boolean operators and operands: 
 Operation can be defined as the action upon data and operator signifies the operation. 
Operator is the symbol that defines the operation. The basic operators used in Boolean algebra are 
AND, OR and NOT, every operation can be expressed in terms of these basic operators. For example 
NAND operation is the combination of AND followed by NOT operation.  
 
AND operator: 
 AND operator is represented by ".". So, A AND B can be represented as A.B. Other symbols ^ 
and  , are also used for representing AND operation. The result of AND operation is exactly same as 
simple arithmetic multiplication. The result will only be true (1) when all the inputs are true. The 
truth table of AND operation is:  

Inputs Outputs 

A B X=A.B 

0 
0 
1 
1 

0 
1 
0 
1 

0 
0 
0 
1 

 
OR operator: 
 OR operator is represented by "+". So, A OR B can be represented as A+B. Other symbols 
used are V and  . In ordinary algebra "+" means addition, but in Boolean algebra it simply 
represents logical OR operation. The result of OR operation is not exactly same as those of 
arithmetic addition. In this operation the result will be true, if at least one of the input is true.  

Inputs Outputs 

A B X=A+B 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 

 
NOT operator: 
 NOT operator is represented by – or '. NOT operation of operand A (NOT A) can be 
represented by     or A'. The result of NOT operation is the complement or bar or reverse of the 
Boolean input.  

Inputs Outputs 

A A' 

0 
1 

1 
0 

Operands: 
 Operands are the data items on which the operation is performed. In an operation A+B, A 
and B are the operands. The value of operands A and B can change to either 0 or 1.  
 

 2.1.2 Common postulates 

Boolean postulates are fundamental conditions or self-evident proposition. These are the primary 
statements, which are clear or obvious. The Boolean postulates originate from basic logic operations 
AND, OR and NOT. These postulates define these operations.  

1. 0.0=0 
2. 0.1=0 
3. 1.0=0 
4. 1.1=1 

Derived from AND operation 

5. 0+0=0 
6. 0+1=1 

Derived from OR operation 



Digital Logic 

© Mr. Bishwo Prakash Pokharel Page 21 

7. 1+0=1 
8. 1+1=1 

9. 0'=1 
10. 1'=0 

Derived from NOT operation 

 

2.2 Basic Theory of Boolean Algebra 

 2.2.1 Duality theorem 

Dual of the Boolean expression is derived by: 
1. Replacing AND operation by OR 
2. Replacing OR operation by AND 
3. All 1's are changed to 0 
4. All 0's are changed to 1 
5. Variables and complements are left unchanged. 

Example:  
 X+Y'Z+0 = (0+X).(Y'+Z).1 
 XY'+XYZ+YZ' = (X+Y').(X+Y+Z).(Y+Z') 
 
 2.2.2 Basic theorems 

1. Commutative Law: 
The commutative law of Boolean algebra is expressed by: 
i. (A+B)=(B+A) 
ii. (A.B)=(B.A) 

2. Associative Law: 
i. (A+B)+C=A+(B+C) 
ii. (A.B).C=A.(B.C) 

3. Distributive Law: 
i. A.(B+C)=A.B+A.C 
ii. A+(B+C)=(A+B).(A+C) 

4. Identity Law: 
i. A+0=A 
ii. A.1=A 

5. Complement Law: 
i. A+A'=1 
ii. A.A'=0 

 

 2.2.3 De Morgan's theorem 

First Theorem: 
The De-Morgan's first theorem states that, "The complement of a sum equals to the product of the 
complements". 
 i.e. (A+B)'=A'.B' 
Proof: 
Graphical symbol: 

 
Truth table: 

Inputs  output1   Output2 

A B A+B (A+B)' A' B' A'.B' 

0 0 0 1 1 1 1 

0 1 1 0 1 0 0 

1 0 1 0 0 1 0 

1 1 1 0 0 0 0 
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Conclusion: Comparing the values of (A+B)' and A'.B' from the truth table, both are equal. Hence 
proved. 
 
Second Theorem: 
 De Morgan's second theorem states that, "The complement of a product is equal to the sum 
of the complements." 
i.e. (A.B)'=A'+B' 
Proof: 
Graphical symbols: 

 
Truth table: 

Inputs  output1   Output2 

A B A.B (A.B)' A' B' A'+B' 

0 0 0 1 1 1 1 

0 1 0 1 1 0 1 

1 0 0 1 0 1 1 

1 1 1 0 0 0 0 

Conclusion 
 Comparing the values of (A.B)' and A'+B' from the truth table both are equal, hence proved.  
 

2.3 Boolean Function 

 2.3.1 Boolean function  

A Boolean function is an expression formed with binary variables (variables that takes the value of 0 

or 1), the two binary operators OR and AND, and unary operator NOT, parentheses, and an equal 

sign. For given value of the variables, the function can be either 0 or 1. 



Boolean function represented as an algebraic expression: Consider Boolean function  

F1 = xyz'. Function F is equal to 1 if x=1, y=1 and z=0; otherwise F1 =0. Other examples are:  

o F2 = x + y'z,  
o F3 = x'y'z + x'yz + xy',  
o F4 = xy' + x'z etc.  

 Boolean function represented in a truth table:  

The number of rows in the truth table is 2n, where n is the number of binary variables in the 

function, The 1's and 0's combinations for each row is easily obtained from the binary numbers by 

counting from 0 to 2n – 1. 

 
A Boolean function may be transformed from an algebraic expression into a logic diagram composed 

of AND, OR, and NOT gates. The implementation of the four functions introduced in the previous 

discussion is shown below: 
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 2.3.2 Algebraic manipulation and simplification of Boolean function 

A literal is a primed or unprimed (i.e. complemented or un-complemented) variable. When a 
Boolean function is implemented with logic gates, each literal in the function designates an input to 
a gate, and each term is implemented with a gate.  

The minimization of the number of literals and the number of terms results in a circuit with less 
equipment. It is not always possible to minimize both simultaneously; usually, further criteria must 
be available. At the moment, we shall narrow the minimization criterion to literal minimization. We 
shall discuss other criteria in unit 3.  

The number of literals in a Boolean function can be minimized by algebraic manipulations. 
Unfortunately, there are no specific rules to follow that will guarantee the final answer. The only 
method available is a cut-and-try procedure employing the postulates, the basic theorems, and any 
other manipulation method that becomes familiar with use. The following examples illustrate this 
procedure.  
Simplify the following Boolean functions to a minimum number of literals.  
1. x + x 'y = (x + x ')(x + y) = 1.(x + y) = x + y  

2. x(x' + y) = xx' + xy = 0 + xy = xy  

3. x'y'z + x'yz + xy' = x'z(y' + y) + xy = x'z + xy  

4. xy + x' z + yz = xy + x' z + yz (x + x')  
= xy + x'z + xyz + x'yz  
= xy(1 + z) + x'z(1 + y)  
= xy + x'z  
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5. (x + y)(x' + z)(y + z) = (x + y)(x' + z) by duality from function 4.  
 

Operator Precedence  

The operator precedence for evaluating Boolean expressions is   

1. Paren theses( )  

2. NOT'  

3. AND.  

4. OR+  

In other words, the expression inside the parentheses must be evaluated before all other operations. 

The next operation that holds precedence is the complement, then follows the AND, and finally the 

OR. Example: (a+b.c).d'  here we first evaluate ‘b.c’ and OR it with ‘a’ followed by ANDing with 

complement of ‘d’.  

  

 2.3.3 Complement of a function 

The complement of a function F is F' and is obtained from an interchange of 0's for 1's and 1's for 0's 
in the value of F. The complement of a function may be derived algebraically through DeMorgan's 
theorem. DeMorgan's theorems can be extended to three or more variables. The three-variable 
form of the first DeMorgan's theorem is derived below.  
(A + B + C)' = (A + X)' let B + C = X  

= A'X' (DeMorgan)  
= A'· (B + C)' substitute B + C = X  
= A'.(B'C') (DeMorgan)  
= A'B'C' (associative)  

DeMorgan's theorems for any number of variables resemble in form the two variable case and can 
be derived by successive substitutions similar to the method used in the above derivation. These 
theorems can be generalized as follows:  

(A + B + C + D + ... + F)' = A'B'C'D'… F'  
(ABCD ... F)' = A' + B' + C' + D' + ... + F' 

The generalized form of De Morgan's theorem states that the complement of a function is obtained 
by interchanging AND and OR operators and complementing each literal.  
 
Two ways of getting complement of a Boolean function:  
1. Applying DeMorgan’s theorem:  
Question: Find the complement of the functions F1 = x'yz' + x'y'z and F2 = x(y'z' + yz).  
By applying DeMorgan's theorem as many times as necessary, the complements are obtained as 
follows:  
F1' = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x + y' + z)(x + y + z')  
F2' = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y'z')'· (yz)' = x' + (y + z)(y' + z')  
2. First finding dual of the algebraic expression and complementing each literal  
 
Question: Find the complement of the functions F1 and F2 of example above by taking their duals 
and complementing each literal.  

 F1 = x'yz' + x'y'z.  
The dual of F1 is (x' + y + z')(x' + y' + z).  
Complement each literal: (x + y' + z)(x + y + z ') = F1' .  

 F2 = x(y'z' + yz).  
The dual of F1 is x + (y' + z')(y + z).  
Complement each literal: x' + (y + z)(y' + z ') = F2' . 
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2.4 Logic operations and Logic gates 

 2.4.1 Logic Gates : Basic gates, Universal gates, Ex-OR, Ex-NOR, Buffer 

 A logic gate is an electronic circuit that operates on one or more inputs signals to produce an 
output signal. The logic gate is used for binary operation and is the basic component of digital 
computer. It is embodied into Integrated Circuit (IC). Each gate has its specific function and graphical 
symbol. The function of gate is expressed by means of an algebraic expression.  
In digital computer, there are three basic gates, which are: 

1. AND gate 
2. OR gate 
3. NOT gate 

Apart from the basic gates, there are other gates derived from basic gates, which are: 
4. NAND gate 
5. NOR gate 
6. Exclusive OR (XOR) gate 
7. Exclusive NOX (XNOR) gate 

 
AND gate: 
 AND gate is an electronic circuit, which produces high (1) output when all inputs are high. 
Otherwise, the output will be low (0). The output is equal to the product of the logic inputs. It can 
have two or more inputs and produces a single output.  

Graphical symbol:     
Algebraic expression:    X=A.B 
Truth table: 

Inputs Outputs 

A B X=A.B 

0 
0 
1 
1 

0 
1 
0 
1 

0 
0 
0 
1 

 

Venn-diagram:             
 
OR gate: 
 OR gate is an electronic circuit, which produces high (1) output when one of the input is high 
(1). If all inputs are low (0), then the output will also be low (0). The output is equal to the sum of the 
logic inputs. It has two or more inputs and produces a single output.  

Graphical symbol:     
Algebraic expression:    X=A+B 
Truth table: 

Inputs Outputs 

A B X=A+B 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
1 
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Venn-diagram:             
 
 
NOT gate: 
 NOT gate is an electronic circuit whose output is the complement of the input. It is also 
called inverter. If we provide high input (1) to this gate, it will produce low output (0) and vice-versa. 
It has only one input and an output.  

Graphical symbol:   
Algebraic expression:  X=A' 
Truth table: 

Inputs Outputs 

A A' 

0 
1 

1 
0 

Venn diagram:      
 
NAND gate: 
 The NAND gate is the combination of AND and NOT gate. This electronic gate produces low 
(0) output, when all inputs are high (1), otherwise the output will be high (1). It is the complement of 
AND gate. It has two or more inputs and produces a single output.  

Graphical symbol:     
Algebraic expression:   X=(A.B)' 
Truth table:     

Inputs  Output 

A B A.B X=(A.B)' 

0 0 0 1 

0 1 0 1 

1 0 0 1 

1 1 1 0 

Venn-diagram:   
 
NOR gate: 
 NOR gate is the combination of OR gate and NOT gate. This electronic gate produces high (1) 
output when all inputs are low (0) otherwise, output will be (0). It is the complement of OR gate. It 
has two or more than two inputs and produces a single output.  

Graphical symbol:     
Algebraic expression:   X=(A+B)' 
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Truth Table: 
 
    

Inputs  Output 

A B A+B X=(A+B)' 

0 0 0 1 

0 1 1 0 

1 0 1 0 

1 1 1 0 

Venn-diagram:    
 
Exclusive-OR (X-OR) gate: 
 The XOR gate produces low output (0) when both the inputs are same otherwise, the output 
will be high (1). It can also have two or more inputs which produces single output.  

Graphical symbol:   
Algebraic expression:   X=A'.B+A.B' 
Truth table: 

Inputs     output 

A B A' B' AB' A'B X=AB'+A'B 

0 0 1 1 0 0 0 

0 1 1 0 0 1 1 

1 0 0 1 1 0 1 

1 1 0 0 0 0 0 

 

Venn-diagram:     
 
Exclusive-NOR (X-NOR) gate: 
 XNOR gate is equivalent to an XOR gate followed by an inverter. This gate produces high(1) 
output when all inputs are either low (0) or high (1). It can also have two or more inputs and a single 
output.  

Graphical symbol:   
Algebraic expression:  X=A.B+A'.B' 
Truth Table:  

Inputs     output 

A B A' B' A'B' AB X=AB'+A'B 

0 0 1 1 1 0 1 

0 1 1 0 0 0 0 

1 0 0 1 0 0 0 

1 1 0 0 0 1 1 
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Venn-diagram:    
 
NAND and NOR gates as Universal gate: 
NAND and NOR gates are also known as universal gate, since it is possible to implement any logic 
expression using only NAND gate. NAND gates are sufficient to implement any Boolean expression. 
Similarly, only NOR gates are sufficient to implement any Boolean expression. The proper 
combination of either NAND gate or NOR gate can be used to perform each of the AND, OR, NOT 
operation.  
Universality of NAND gate: 

 
Universality of NOR gate: 

 

 
 

 2.4.2 Implementation of Boolean function using gates 

 

2.5 IC Digital Logic Families 

 2.5.1 RTL, TTL, MOS, CMOS, I2L 

Digital logic family refers to the specific circuit technology to which digital integrated circuits belong. 
Family has its own basic electronic circuit upon which more complex digital circuits and components 
are developed. The basic circuit in each technology is a NAND, NOR, or an inverter gate. The 
electronic components used in the construction of the basic circuit are usually used as the name of 
the technology. Different logic families have been introduced commercially. Some of most popular 
are:  
TTL (transistor-transistor logic): The TTL family evolved from a previous technology that used 
diodes and transistors for the basic NAND gate. This technology was called DTL for diode-transistor 
logic. Later the diodes were replaced by transistors to improve the circuit operation and the name of 
the logic family was changed to TTL.  
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ECL (emitter-coupled logic): Emitter-coupled logic (ECL) circuits provide the highest speed 
among the integrated digital logic families. ECL is used in systems such as supercomputers and signal 
processors, where high speed is essential. The transistors in ECL gates operate in a non-saturated 
state, a condition that allows the achievement of propagation delays of 1 to 2 nanoseconds.  

MOS (metal-oxide semiconductor): The metal-oxide semiconductor (MOS) is a unipolar 
transistor that depends upon the flow of only one type of carrier, which may be electrons (n-
channel) or holes (p-channel), this is in contrast to the bipolar transistor used in TTL and ECL gates, 
where both carriers exist during normal operation. A p-channel MOS is referred to as PMOS and an 
n-channel as NMOS. NMOS is the one that is commonly used in circuits with only one type of MOS 
transistor.  

CMOS (complementary metal-oxide semiconductor): Complementary MOS (CMOS) technology 
uses one PMOS and one NMOS transistor connected in a complementary fashion in all circuits. The 
most important advantages of MOS over bipolar transistors are the high packing density of circuits, a 
simpler processing technique during fabrication, and a more economical operation because of the 
low power consumption.  

IIL (Integrated Injection Logic): Integrated injection logic (IIL, I2L, or I2L) is a class of digital circuit 
technology built with multiple collector bipolar junction transistors (BJT). When introduced it had 
speed comparable to TTL yet was almost as low power as CMOS, making it ideal for use in VLSI (and 
larger) integrated circuits. Although the logic voltage levels are very close (High: 0.7V, Low: 0.2V), I2L 
has high noise immunity because it operates by current instead of voltage. Sometimes, also known 
as Merged Transistor Logic.  
 
Currently, silicon-based Complementary Metal Oxide Semiconductor (CMOS) technology dominates 

due to its high circuit density, high performance, and low power consumption. Alternative 

technologies based on Gallium Arsenide (GaAs) and Silicon Germanium (SiGe) are used selectively 

for very high speed circuits. 

 

           2.5.2 Special characteristics: 

For each specific implementation technology, there are details that differ in their electronic circuit 

design and circuit parameters. The most important parameters used to characterize an 

implementation technology are: 

 
1. Fan-in  
For high-speed technologies, fan-in, the number of inputs to a gate, is often restricted on gate 

primitives to no more than four or five. This is primarily due to electronic considerations related to 

gate speed. To build gates with larger fan-in, interconnected gates with lower fan-in are used during 

technology mapping. A mapping for a 7-input NAND gate is made up of two 4- input NANOs and an 

inverter as shown in figure. 

 
Fig: Implementation of a 7-input NAND Gate using NAND Gates with 4 or Fewer Inputs. 

 
2. Propagation delay  
The signals through a gate take a certain amount of time to propagate from the inputs to the output. 
This interval of time is defined as the propagation delay of the gate. Propagation delay is measured 
in nanoseconds (ns). 1 ns is equal to 10-9 of a second. The signals that travel from the inputs of a 
digital circuit to its outputs pass through a series of gates. The sum of the propagation delays 
through the gates is the total delay of the circuit.  
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The average propagation delay time of a gate is calculated from the input and output waveforms as: 

 
Fig: Measurement of propagation delay 



 Delay is usually measured at the 50% point with respect to the H and L output voltage levels.  

 High-to-low (tPHL) and low-to-high (tPLH) output signal changes may have different 
propagation delays.  

 High-to-low (HL) and low-to-high (LH) transitions are defined with respect to the output, not 
the input.  

 An HL input transition causes:  
o an LH output transition if the gate inverts and  
o An HL output transition if the gate does not invert.  

 
3. Fan-out  
Fan-out specifies the number of standard loads driven by a gate output i.e. Fan-out is a measure of 

the ability of a logic gate output to drive a number of inputs of other logic gates of the same type. 

Maximum Fan-out for an output specifies the fan-out that the output can drive without exceeding its 

specified maximum transition time. Standard loads may be defined in a variety of ways depending 

upon the technology. For example: the input to a specific inverter can have load equal to 1.0 

standard load. If a gate drives six such inverters, then the fan-out is equal to 6.0 standard loads. 

 
Fig: AND gate above is attached to the inputs of four other components so has a fan out of 4. 

 
4. Power Dissipation  
Every electronic circuit requires a certain amount of power to operate. The power dissipation is a 
parameter expressed in millwatts (mW) and represents the amount of power needed by the gate. 
The number that represents this parameter does not include the power delivered from another 
gate; rather, it represents the power delivered to the gate from the power supply. An IC with four 
gates will require, from its power supply, four times the power dissipated in each gate.  
The amount of power that is dissipated in a gate is calculated as:  

PD (Power Dissipation) = VCC * ICC Where Vcc = supply voltage and 
    Icc = current drawn by the circuit 

The current drain from the power supply depends on the logic state of the gate. The current drawn 

from the power supply when the output of the gate is in the high-voltage level is termed ICCH. When 

the output is in the low-voltage level, the current is lCCL. The average current is 

 
And used to calculate the average power dissipation as, 
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Example: A standard TTL NAND gate uses a supply voltage Vcc of 5V and has current drains ICCH = 1 

mA and ICCL = 3 mA. The average current is (3 + 1)/2 = 2 mA. The average power dissipation is 5 x 2 = 

10 mW. An IC that has four NAND gates dissipates a total of 10 x 4 = 40 mW. In a typical digital 

system there will be many ICs, and the power required by each IC must be considered. The total 

power dissipation in the system is the sum total of the power dissipated in all ICs. 

 

5. Noise Margin  
Undesirable or unwanted signals (e.g. voltages, currents etc) on the connecting wires between logic 
circuits are referred to as noise. There are two types of noise to be considered:  

 DC noise is caused by a drift in the voltage levels of a signal.  

 AC noise is a random pulse that may be created by other switching signals.  
 
Thus, noise is a term used to denote an undesirable signal that is superimposed upon the normal 

operating signal. Noise margin is the maximum noise voltage added to an input signal of a digital 

circuit that does not cause an undesirable change in the circuit output. The ability of circuits to 

operate reliably in a noise environment is important in many applications. Noise margin is expressed 

in volts and represents the maximum noise signal that can be tolerated by the gate. 

 
(a) Output voltage range  (b) Input voltage range 

 
In fig, VOL is the maximum voltage that the output can be when in the low-level state. The circuit 
can tolerate any noise signal that is less than the noise margin (VIL - VOL) because the input will 
recognize the signal as being in the low-level state. Any signal greater than VOL plus the noise-
margin figure will send the input voltage into the indeterminate range, which may cause an error in 
the output of the gate. In a similar fashion, a negative-voltage noise greater than VOH - VIH will send 
the input voltage into the indeterminate range.  
The parameters for the noise margin in a standard TTL NAND gate are VOH = 2.4 V, VOL = 0.4 V, VlH 

= 2 V, and VlL = 0.8 V. The high-state noise margin is 2.4 - 2 = 0.4 V, and the low-state noise margin is 

0.8 - 0.4 = 0.4 V. In this case, both values are the same. 
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Unit 3:  Simplification of Boolean Functions 

 

3.1 SOP and POS 

 3.1.1 SOP, POS, min-term, max-term, standard and canonical form 

Canonical and standard forms  
We can write Boolean expressions in many ways, but some ways are more useful than others. We 

will look first at the “term” types, made up of “literals”. 

 

Minterms  
A minterm is a special product (ANDing of terms) of literals, in which each input variable appears 

exactly once.  
A function with n variables has 2n minterms (since each variable can appear complemented or 

not)  
A three-variable function, such as f(x, y, z), has 23 = 8 minterms:  

x’y’z’  x’y’z  x’yz’  x’yz 
xy’z’  xy’z  xyz’  xyz 

Each minterm is true for exactly one combination of inputs:  
 

Maxterms  
A maxterm is a sum (or ORing of terms) of literals, in which each input variable appears exactly 

once.  
A function with n variables has 2n maxterms  
The maxterms for a three-variable function f(x, y, z):  
 

x’ + y’ + z’  x’ + y’ + z  x’ + y + z’  x’+ y + z 
x + y’ + z’  x + y’ + z  x + y + z’  x + y + z 

 
Table: Minterms and Maxterms for 3 Binary Variables with their symbolic shorthand 

Note: Each maxterm is the complement of its corresponding minterm and vice versa (viz. m0 = M0’, 

M4 = m4’ etc.). 

A Boolean function may be expressed algebraically (SOP or POS form) from a given truth table by:  
Forming a minterm for each combination of the variables that produces a 1 in the function, and 

then taking the OR of all those terms.  

Forming a maxterm for each combination of the variables that produces a 0 in the function, and 
then taking the AND of all those maxterms.  

 
Canonical forms  
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Boolean functions expressed as a sum of min terms or product of maxterms are said to be in 
canonical form. These complementary techniques are describes below. Canonical form is not 
efficient representation but sometimes useful in analysis and design. In an expression in canonical 
form, every variable appears in every term.  
 
Sum of Minterms (Sum of Products or SOP)  
We have seen, one can obtain 2" distinct minterms form n binary input variables and that any 
Boolean function can be expressed as a sum of minterms. The minterms whose sum defines the 
Boolean function are those that give the 1's of the function in a truth table. It is sometimes 
convenient to express the Boolean function in its sum of minterms form. If not in this form, it can be 
made so by first expanding the expression into a sum of AND terms. Each term is then inspected to 
see if it contains all the variables. If it misses one or more variables, it is ANDed with an expression 
such as x + x', where x is one of the missing variables. 
 

Question: Express the Boolean function in a sum of minterms.  
Solution: The function has three variables A, B, and C.  
The first term A is missing two variables; therefore:  

A = A (B + B ') = AB + AB' [B is missing variable]  
This is still missing one variable C, so A = AB(C + C') + AB'(C + C') = ABC + ABC' + AB'C + AB'C'  

The second term B'C is missing one variable: B'C = B'C(A + A') = AB'C + A'B'C  

Combing all terms, we have F = A+B'C = ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C  

But AB'C appears twice, and according to THEOREM 1 of Boolean algebra x + x = x, it is possible 
to remove one of them. Rearranging the minterms in ascending order, we finally obtain:  

F = A'B'C + AB'C' + AB'C + ABC' + ABC  
   = m1 + m4 + m5 + m6 + m7  

Shorthand notation,   
( ,,C) = Σ(1,4,5,6,7)  

 

The summation symbol Σ stands for the ORing of terms: the numbers following it are the minterms of 

the function. 

 

An alternate procedure for deriving the minterms of a Boolean function is to obtain the truth table 

of the function directly from the algebraic expression and then read the minterms from the truth 

table. 

 
 

Truth table for F = A + B 'C, from the truth table, we can then read the five minterms of the function 

to be 1, 4, 5, 6, and 7. 

 

Product of Maxterms (Product of Sums or POS)  
Each of the 22  functions of n binary variables can be also expressed as a product of maxterms. To 

express the Boolean function as a product of maxterms, it must first be brought into a form of OR 

terms. This may be done by using the distributive law, x + yz = (x + y)(x + z). Then any missing 

variable x in each OR term is ORed with xx'. This procedure is clarified by the following example: 
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Question: Express the Boolean function F = xy + x'z in a product of maxterm form.  
Solution:  
First, con vert the function into OR terms using the distributive law:  

F = xy + x' z = (xy + x ')(xy + z) 
= (x + x')(y + x')(x + z)(y + z) 
= (x' + y)(x + z)(y + z) 

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore:  
 

x' + y = x' + y + zz' = (x' + y + z)(x' + y + z ')  
x + z = x + z + yy' = (x + y + z)(x + y' + z)  
y + z = y + z + xx' = (x + y + z)(x' + y + z)  

Combing all maxterms and removing repeated terms:  
F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z ')  
  = M0M2M4M5  

Shorthand notation: 

F(x, y, z) = (0,2,4,5)  

The product symbol  denotes the ANDing of maxterms; the numbers are the maxterms of the 

function. 

 
Conversion between canonical forms  
The complement of a function expressed as the sum of minterms equals the sum of minterms 

missing from the original function. 

 

For example: Consider the function, ( ,,C) = Σ(1,4,5,6,7)  
Its complement can be expressed as:  ′ ( ,,C) = Σ (0,2,3) = 0+ 2+ 3  
Now, if we take the complement of F' by DeMorgan's theorem, we obtain F in a different form:  

  ( ,,C) = ( 0+ 2+ 3) ′= 0′. 2′. 3′= 0. 2. 3=(0,2,3)  
The last conversion follows from the definition of min terms and maxterms that mj’ = Mj 

 

General Procedure: To convert from one canonical form to another, interchange the symbols and list 

those numbers missing from the original form. In order to find the missing terms, one must realize 

that the total number of minterms or maxterms is 2n (numbered as 0 to 2n-1), where n is the number 

of binary variables in the function. 

 

Consider a function, F = xy + x'z. First, we derive the truth table of the function 

 


 The minterms of the function are read from the truth table to be 1, 3, 6, and 7. The function 
expressed in sum of minterms is  
( ,  ,  ) =Σ (1, 3, 6, 7)  

 Since there are a total of eight minterms or maxterms in a function of three variables, we 
determine the missing terms to be 0, 2, 4, and 5. The function expressed in product of 
maxterm is  
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( ,  ,  ) = (0, 2, 4, 5) 

 
 
 
Standard Forms  
This is another way to express Boolean functions. In this configuration, the terms that form the 

function may contain one, two, or any number of literals. There are two types of standard forms: 
the sum of products and product of sums.  

The sum of products is a Boolean expression containing AND terms, called product terms, of one 
or more literals each. The sum denotes the ORing of these terms.  

 
Example: F1 = y' + xy + x’yz’, the expression has three product terms of one, two, and three literals 

each, respectively. Their sum is in effect an OR operation.  
A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may 

have any number of literals. The product denotes the ANDing of these terms. An example of a 
function expressed in product of sums is F1 = x(y' + z)(x' + y + z' + w), this expression has three 
sum terms of one, two, and four literals each, respectively. The product is an AND operation.  

Function can also be in non-standard form: F3 = (AB + CD) (A'B' + CD') is neither in SOP nor in 
POS forms. It can be changed to a standard form by using the distributive law as F3 = A'B'CD + 

ABC'D'.  

 

 3.1.2 Simplification of SOP and POS function using Boolean algebra 

First obtain one expression for the circuit, then try to simplify. Example: In diagram below, (a) 
can be simplified to (b) using one of following two methods:  
1. Algebraic method (use Boolean algebra theorems)  

2. Karnaugh mapping method (systematic, step-by-step approach)  

 
METHOD 1: Minimization by Boolean algebra  
Make use of relationships and theorems to simplify Boolean Expressions  

Perform algebraic manipulation resulting in a complexity reduction.  

This method relies on your algebraic skill  

3 things to try:  

o Grouping  
A + AB + BC  
A (1+ B) + BC  
A + BC [since 1+ B =1]  

o Multiplication by redundant variables  
 Multiplying by terms of the form A + A’ does not alter the logic  
 Such multiplications by a variable missing from a term may enable 

minimization  
Example: 
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o Application of DeMorgan’s theorem  
 Expressions containing several inversions stacked one upon the other often 

are simplified by using DeMorgan’s law which unwraps multiple inversions.  

Example:  

 
Question (Logic Design): Design a logic circuit having 3 inputs, A, B, C will have its output HIGH only 

when a majority of the inputs are HIGH. 
Solution:  
Step 1: Set up the truth table:  

 
Step 2: Write minterm (AND term) for each case where the output is 1.  
Step 3: Write the SOP from the output. 

 
Step 4: Simplify the output expression 

 
Step 5: Implement the circuit. 
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3.2 K-map 

 3.2.1 Importance of K-map 

Algebraic minimization of Boolean functions is rather awkward because it lacks specific rules to 
predict each succeeding step in the manipulative process. The map method provides a simple 
straightforward procedure for minimizing Boolean functions. This method may be regarded as a 
pictorial form of a truth table. The map method, first proposed by Veitch and modified by Karnaugh, 
is also known as the "Veitch diagram" or the "Karnaugh map."  
The k-map is a diagram made up of grid of squares.  

Each square represents one minterm.  

The minterms are ordered according to Gray code (only one variable changes between 
adjacent squares).  

Squares on edges are considered adjacent to squares on opposite edges.  

Karnaugh maps become clumsier to use with more than 4 variables.  
 
In fact, the map presents a visual diagram of all possible ways a function may be expressed in a 

standard form. By recognizing various patterns, the user can derive alternative algebraic expressions 

for the same function, from which he can select the simplest one. We shall assume that the simplest 

algebraic expression is anyone in a sum of products or product of sums that has a minimum number 

of literals. (This expression is not necessarily unique) 

 

 3.2.2 2 and 3 variable K-map 

 Two variable maps  
There are four minterms for a Boolean function with two variables. Hence, the two-variable map 

consists of four squares, one for each minterm, as shown in Figure: 

   
Fig: Two-variable map     Fig: Representation of functions in the map 

 

Three variable maps  
There are eight minterms for three binary variables. Therefore, a three-variable map consists of 

eight squares, as shown in Figure. The map drawn in part (b) is marked with binary numbers for 

each row and each column to show the binary values of the minterms. 

 
Fig: Three-variable map 

Question: Simplify the Boolean function 

F(X,Y,Z) = Σ(2,3,4,5) 

Solution:  
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Step 1: First, a 1 is marked in each minterm that represents the function. This is shown in Figure, 

where the squares for minterms 010, 011, 100, and 101 are marked with 1's. For convenience, all 

of the remaining squares for which the function has value 0 are left blank rather than entering the 

0's. 

 
 

Step 2: Explore collections of squares on the map representing product terms to be considered for 
the simplified expression. We call such objects rectangles. Rectangles that correspond to 
product terms are restricted to contain numbers of squares that are powers of 2, such as 1, 
2(pair), 4(quad), 8(octet) ... Goal is to find the fewest such rectangles that include all of the 
minterms marked with 1's. This will give the fewest product terms.  

Step 3: Sum up each rectangles (it may be pair, quad etc representing term) eliminating the variable 
that changes in value (or keeping intact the variables which have same value) throughout 
the rectangle.  

From figure, logical sum of the corresponding two product terms gives the optimized expression for 
F:  

F = X’Y+XY’ 

Point to understand 

 
Minterm adjacencies are circular in nature. This figure shows Three-Variable Map in Flat and on a 

Cylinder to show adjacent squares. 

 

Question: Simplify the following two Boolean functions:  
( , , ) =Σ (3,4,6,7)  
( , , ) =Σ (0,2,4,5,6)  

Solution: The map for F and G are given below: 

 
Writing the simplified expression for both functions:  

F = YZ +XZ’ and G = Z’+XY’ 

 

 3.2.3 4-variable K-map 



Digital Logic 

© Mr. Bishwo Prakash Pokharel Page 39 

The map for Boolean functions of four binary variables is shown in Fig below. In (a) are listed the 16 

minterms and the squares assigned to each. In (b) the map is redrawn to show the relationship with 

the four variables. 

 
The map minimization of four-variable Boolean functions is similar to the method used to minimize 

three-variable functions. Adjacent squares are defined to be squares next to each other. In addition, 

the map is considered to lie on a surface with the top and bottom edges, as well as the right and left 

edges, touching each other to form adjacent squares. For example, m0 and m2 form adjacent 

squares, as do m3 and m11. 

 

Question: Simplify the Boolean function  

 ( , , , ) = Σ(0,1,2,4,5,6,8,9,12,13,14) 

Solution:  
Since the function has four variables, a four-variable map must be used. Map representation is 

shown below: 

 
The simplified function is: F = y' + w'z' + xz' 

 
Question: Simplify the Boolean function  

F = A'B'C' + B'CD' + A'BCD' + AB'C'  
Solution:  
First try just to reduce the standard form function into SOP form and then mark 1 for each minterm 
in the map.  

F = A'B'C' + B'CD' + A'BCD' + AB'C'  
  =A'B'C'(D+D') + B'CD(A+A') + A'BCD' + AB'C'(D+D')  
  = A'B'C'D+ A'B'C'D' + AB'CD+A' B'CD + A'BCD' + AB'C'D+ AB'C'D' 

This function also has 4 variables, so the area in the map covered by this function consists of the 

squares marked with 1's in following Fig. 
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Optimized function thus is: F = B'D' + B'C' + A'CD' 

 

 3.2.4 Don't care condition 

The logical sum of the minterms associated with a Boolean function specifies the conditions under 
which the function is equal to 1. The function is equal to 0 for the rest of the min terms. This 
assumes that all the combinations of the values for the variables of the function are valid. In 
practice, there are some applications where the function is not specified for certain combinations of 
the variables.  
 
Example: four-bit binary code for the decimal digits has six combinations that are not used and 

consequently are considered as unspecified. 

 

In most applications, we simply don't care what value is assumed by the function for the 
unspecified minterms. For this reason, it is customary to call the unspecified minterms of a function 
don't-care conditions. These don't-care conditions can be used on a map to provide further 
simplification of the Boolean expression.  
 
Don't-care minterm is a combination of variables whose logical value is not specified. To distinguish 
the don't-care condition from 1's and 0's, an X is used. Thus, an X inside a square in the map 
indicates that we don't care whether the value of 0 or 1 is assigned to F for the particular min term.  
When choosing adjacent squares to simplify the function in a map, the don't-care minterms may be 

assumed to be either 0 or 1. When simplifying the function, we can choose to include each don't-

care minterm with either the 1's or the 0's, depending on which combination gives the simplest 

expression. 

 

Question: Simplify the Boolean function  ( , , , )= Σ(1,3,7,11,15)  
that has the don't-care conditions  ( , , , ) = Σ(0,2,5) 

Solution:  
The map simplification is shown below. The minterms of F are marked by 1's, those of d are marked 

by X's, and the remaining squares are filled with 0's. 
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Fig: Map simplification with don’t care conditions 

In part (a) of the diagram, don't-care minterms 0 and 2 are included with the 1's, which results in the 
simplified function  

F = yz + w'x' 
In part (b), don't-care minterm 5 is included with the 1's and the simplified function now is  

F = yz + w'z 
Either one of the above expressions satisfies the conditions stated for this example. 

 

Product of sum simplification  
The optimized Boolean functions derived from the maps in all of the previous examples were 

expressed in sum-of-products (SOP) form. With only minor modification, the product-of-sums form 

can be obtained. 

 

Procedure:  
The 1's placed in the squares of the map represent the minterms of the function. The minterms not 

included in the function belong to the complement of the function. From this, we see that the 

complement of a function is represented in the map by the squares not marked by 1's. If we mark 

the empty squares with 0's and combine them into valid rectangles, we obtain an optimized 

expression of the complement of the function (F’). We then take the complement of F to obtain the 

function F as a product of sums. 

 

Question: Simplify the following Boolean function  ( , , , ) = (0,1,2,5,8,9,10) in  
(a) Sum of products (SOP) and  
(b) Product of sums (POS). 

 

Solution:  
The 1's marked in the map below represent all the minterms of the function. The squares marked 

with 0's represent the minterms not included in F and, therefore, denote F’. 

(a) Combining the squares with 1's gives the simplified function in sum of products:  
F = B'D' + B'C' + A'C'D 
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(b) If the squares marked with 0's are combined, as shown in the diagram, we obtain the simplified 
complemented function:  

F' = AB + CD + BD' 
Applying DeMorgan's theorem (by taking the dual and complementing each literal as described in 
unit2), we obtain the simplified function in product of sums:  

F = (A' + B')(C' + D')(B' + D) 

The Gate implementation of the simplified expressions obtained above in (a) and (b): 

 
 

3.3 NAND and NOR implementation 

 3.3.1 NAND and NOR conversion 

Digital circuits are more frequently constructed with NAND or NOR gates than with AND and OR 
gates. NAND and NOR gates are easier to fabricate with electronic components and are the basic 
gates used in all IC digital logic families. The procedure for two-level implementation is presented in 
this section.  
 
NAND and NOR conversions (from AND, OR and NOT implemented Boolean functions)  
Because of the prominence of NAND and NOR gates in the design of digital circuits, rules and 
procedures have been developed for the conversion from Boolean functions given in terms of AND, 
OR, and NOT into equivalent NAND and NOR logic diagrams.  
To facilitate the conversion to NAND and NOR logic, there are two other graphic symbols for these 
gates.  
(a) NAND gate  
 
Two equivalent symbols for the NAND gate are shown in diagram below: 

 
Fig: Two graphic symbols for NAND gate 
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(b) NOR gate  

 
Fig: Two graphic symbols for NOR gate 

 
(c) Inverter  

 
Fig: Three graphic symbols for NOT gate 

NAND implementation  
The implementation of a Boolean function with NAND gates requires that the function be simplified 

in the sum of products form. To see the relationship between a sum of products expression and its 

equivalent NAND implementation, consider the logic diagrams of Fig below. All three diagrams are 

equivalent and implement the function: F=AB + CD + E 

 
The rule for obtaining the NAND logic diagram from a Boolean function is as follows:  
First method:  
(a) Simplify the function and express it in sum of products.  

(b) Draw a NAND gate for each product term of the function that has at least two literals. The inputs 
to each NAND gate are the literals of the term. This constitutes a group of first-level gates.  

(c) Draw a single NAND gate (using the AND-invert or invert-OR graphic symbol) in the second level, 
with inputs coming from outputs of first-level gates.  

(d) A term with a single literal requires an inverter in the first level or may be complemented and 
applied as an input to the second-level NAND gate.  

 
Second method:  
If we combine the 0's in a map, we obtain the simplified expression of the complement of the 
function in sum of products. The complement of the function can then be implemented with two 
levels of NAND gates using the rules stated above. If the normal output is desired, it would be 
necessary to insert a one-input NAND or inverter gate. There are occasions where the designer may 
want to generate the complement of the function; so this second method may be preferable. 
Question: Implement the following function with NAND gates: ( ,,) = Σ(0,6) 
 
Solution:  
The first step is to simplify the function in sum of products form. This is attempted with the map. 
There are only two 1's in the map, and they can’t be combined. 
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Fig: Map simplification in SOP 

METHOD1:  
Two-level NAND implementation is shown below: 

 
Fig: F = x'y'z' +xyz' 

 
METHOD2:  
Next we try to simplify the complement of the function in sum of products. This is done by 
combining the 0's in the map: 
 

F' = x'y + xy' + z 
The two-level NAND gate for generating F' is shown below: 

 
Fig: F' = x'y + xy' + z 

If output F is required, it is necessary to add a one· input NAND gate to invert the function. This gives 
a three-level implementation. 
 
NOR Implementation  
The NOR function is the dual of the NAND function. For this reason, all procedures and rules for NOR 
logic are the duals of the corresponding procedures and rules developed for NAND logic. The 
implementation of a Boolean function with NOR gates requires that the function be simplified in 
product of sums form. A product of sums expression specifies a group of OR gates for the sum terms, 
followed by an AND gate to produce the product. The transformation from the OR-AND to the NOR-
NOR diagram is depicted in Fig below. It is similar to the NAND transformation discussed 
previously, except that now we use the product of sums expression. 
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Fig: Three ways to implement F = (A + B) (C + D)E 

All the rules for NOR implementation are similar to NAND except that these are duals, so I won’t 
describe them here.  
Question: Implement the following function with NOR gates: 

F(x,y,z)=Σ(0,6) 

METHOD1  
First, combine the 0's in the map to obtain  
F'=x'y+xy'+z this is the complement of the function in sum of products. Complement F' to obtain the 
simplified function in product of sums as required for NOR implementation:  

F = (x + y') (x' + y) z' 

 
METHOD2  
A second implementation is possible from the complement of the function in product  
of sums. For this case, first combine the 1's in the map to obtain  

F = x'y'z' +xyz' 
Complement this function to obtain the complement of the function in product of sums as required 
for NOR implementation:  

F' = (x + y + z)(x' + y' + z) 

 
Summary of NAND and NOR implementation 
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Unit 4:  Combinational Logic 

 

4.1 Design Procedure 

 4.1.1 Definition of combinational logic circuit 

In digital circuit theory, combinational logic is a type of digital logic which is implemented by 

Boolean circuits, where the output is a pure function of the present input only. This is in contrast to 

sequential logic, in which the output depends not only on the present input but also on the history 

of the input. In other words, sequential logic has memory while combinational logic does not. 

These are the circuit gates employing combinational logic.  

 A combinational circuit consists of n input variables, logic gates, and m output variables. The 
logic gates accept signals from the inputs and generate signals to the outputs.  

 For n input variables, there are 2n possible combinations of binary input values. For each 
possible input combination, there is one and only one possible output combination. A 
combinational circuit can be described by m Boolean functions, one for each output variable. 
Each output function is expressed in terms of the n input variables.  

 
Obviously, both input and output data are represented by binary signals, i.e., logic-1 and the other 

logic-0. The n input binary variables come from an external source; the m output variables go to an 

external destination. A block diagram of a combinational circuit is shown in Fig: 

 
 

 4.1.2 Design procedure 

The design of combinational circuits starts from the verbal outline of the problem and ends in a logic 
circuit diagram or a set of Boolean functions from which the logic diagram can be easily obtained. 
The procedure involves the following steps:  
1. Specification  

Write a specification for the circuit if one is not already available  
2. Formulation  

Derive a truth table or initial Boolean equations that define the required relationships 
between the inputs and outputs, if not in the specification.  

Apply hierarchical design if appropriate  
3. Optimization  

Apply 2-level and multiple-level optimization  

Draw a logic diagram for the resulting circuit using ANDs, ORs, and inverters  
4. Technology Mapping  

Map the logic diagram to the implementation technology selected  
5. Verification  

Verify the correctness of the final design manually or using simulation  
 
In simple words, we can list out the design procedure of combinational circuits as:  
1. The problem is stated.  

2. The number of available input variables and required output variables is determined.  

3. The input and output variables are assigned letter symbols.  

4. The truth table that defines the required relationships between inputs and outputs is derived.  
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5. The simplified Boolean function for each output is obtained.  

6. The logic diagram is drawn.  
 

4.2 Adders/Subtractors 

 4.2.1 Half adder – definition, truth table, logic diagram, implementation 

 Adders  
Digital computers perform a variety of information-processing tasks. Among the basic functions 

encountered are the various arithmetic operations. The most basic arithmetic operation, no doubt, 

is the addition of two binary digits. 

Half-Adder  

 A combinational circuit that performs the addition of two bits is called a half-adder.  

 Circuit needs two inputs and two outputs. The input variables designate the augend (x) and 
addend (y) bits; the output variables produce the sum (S) and carry (C).  

 Now we formulate a Truth table to exactly identify the function of half-adder.  

 
The simplified Boolean functions for the two outputs can be obtained directly from the truth table. 
The simplified sum of products expressions are:  

S = x'y + xy'  
C = xy 

 
Implementation:  

 
 
Other realizations and implementations of Half-adders are:  
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 4.2.2 Full adder – definition, truth table, logic diagram, and implementation 

Full-Adder  

 A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.  

 It consists of three inputs and two outputs. Two of the input variables, denoted by x and y, 
represent the two significant bits to be added. The third input, z, represents the carry from 
the previous lower significant position.  

 Truth table formulation:  

 
The S output is equal to 1 when only one input is equal to 1 or when all three inputs are equal to 1. 

The C output has a carry of 1 if two or three inputs are equal to 1. 

 

The input-output logical relationship of the full-adder circuit may be expressed in two Boolean 

functions, one for each output variable. Each output Boolean function requires a unique map for its 

simplification (maps are not necessary; you guys can use algebraic method for simplification). 

Simplified expression in sum of products can be obtained as: 

 
S = x'y'z + x'yz' + xy'z' + xyz    C = xy + xz + yz 

 
Implementation:  

 
Fig: Implementation of a full-adder in sum of products. 

 
A full-adder can be implemented with two half-adders and one OR gate.  
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Fig: Implementation of a full-adder with two half-adders and an OR gate 

Here, The S output from the second half-adder is the exclusive-OR of z and the output of the first 
half-adder, giving:  
S = z ⊕ (x ⊕ y) 
  = z'(xy' + x'y) + z(xy' + x'y)'  
  = z'(xy' + x'y) + z(xy + x'y')  
  = xy'z' + x'yz' + xyz + x'y'z 
 
C = z (x ⊕ y) + xy  
  = z(xy' + x'y) + xy  
  = xy'z + x'yz + xy 
 
Subtractors  
The subtraction of two binary numbers may be accomplished by taking the complement of the 

subtrahend and adding it to the minuend. By this method, the subtraction operation becomes an 

addition operation requiring full-adders for its machine implementation. It is possible to implement 

subtraction with logic circuits in a direct manner, as done with paper and pencil. By this method, 

each subtrahend bit of the number is subtracted from its corresponding significant minuend bit to 

form a difference bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the 

next significant position. Just as there are half- and full-adders, there are half- and full-subtractors. 

 

 4.2.3 Half subtractor 



 A half-subtractor is a combinational circuit that subtracts two bits and produces their 
difference bit.  

 Denoting minuend bit by x and the subtrahend bit by y. To perform x - y, we have to check 
the relative magnitudes of x and y:  

 If x≥ y, we have three possibilities: 0 - 0 = 0, 1 - 0 = 1, and 1 - 1 = 0.  

 If x < y, we have 0 - 1, and it is necessary to borrow a 1 from the next higher stage.  

 The half-subtractor needs two outputs, difference (D) and borrow (B).  

 The truth table for the input-output relationships of a half-subtractor can now be derived as 
follows:  

 
The output borrow B is a 0 as long as x≥ y. It is a 1 for x = 0 and y = 1. The D output is the result of the 
arithmetic operation 2B + x - y. 
The Boolean functions for the two outputs of the half-subtractor are derived directly from the truth 
table:  

D = x'y + xy'  
B = x'y 



Implementation for Half-subtractor is similar to Half-adder except the fact that x input of B is 
inverted. (Here, D is analogous to S and B is similar to C of half-adder circuit).  
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 4.2.4 Full sub-tractor 



 A full-subtractor is a combinational circuit that performs a subtraction between two bits, 
taking into account that a 1 may have been borrowed by a lower significant stage.  

 This circuit has three inputs and two outputs. The three inputs, x, y, and z, denote the 
minuend, subtrahend, and previous borrow, respectively. The two outputs, D and B, 
represent the difference and output-borrow, respectively.  

 

 Truth-table and output-function formulation:  

 
 

 The 1's and 0's for the output variables are determined from the subtraction of x - y - z.  

 The combinations having input borrow z = 0 reduce to the same four conditions of the half-
adder.  

 For x = 0, y = 0, and z = 1, we have to borrow a 1 from the next stage, which makes B = 1 and 
adds 2 to x. Since 2 - 0 - 1 = 1, D = 1.  

 For x = 0 and yz = 11, we need to borrow again, making B = 1 and x = 2. Since 2 - 1 - 1 = 0, D = 
0.  

 For x = 1 and yz = 01, we have x - y - z = 0, which makes B = 0 and D = 0.  

 Finally, for x = 1, y = 1, z =1I, we have to borrow 1, making B = 1 and x = 3, and 3 - 1 - 1 = 1, 
making D=1.  

The simplified Boolean functions for the two outputs of the full-subtractor are derived in the maps: 

 
D = x'y'z + x'yz' + xy'z' + xyz   B = x'y + x'z + yz 

 
Circuit implementations are same as Full-adder except B output (analogous to C) is little different.  
 

4.3 Code conversion  

 4.3.1 General Concept 



 The availability of a large variety of codes for the same discrete elements of information 
results in the use of different codes by different digital systems. It is sometimes necessary to 
use the output of one system as the input to another. A conversion circuit must be inserted 
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between the two systems if each uses different codes for the same information. Thus, a 
code converter is a circuit that makes the two systems compatible even though each uses a 
different binary code.  

 To convert from binary code A to binary code B, code converter has input lines supplying the 
bit combination of elements as specified by code A and the output lines of the converter 
generating the corresponding bit combination of code B. A Code converter (combinational 
circuit) performs this transformation by means of logic gates.  

 The design procedure of code converters will be illustrated by means of a specific example of 
conversion from the BCD to the excess-3 code. I will describe 5-step design procedure of this 
code converter so that you guys will be able to understand how practical combinational 
circuits are designed.  

 

 4.3.2 Code conversion – BCD to Excess-3 

 
1. Specification  

 Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits  

 BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively.  

 Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011) added 
to each BCD code word  

 Implementation:  
o multiple-level circuit  

 
2. Formulation  

Conversion of 4-bit codes can be most easily formulated by a truth table  
Variables- BCD: A, B, C, D  
Variables- Excess-3: W, X, Y, Z  
Don’t Cares: BCD 1010 to 1111  

 
Table: Truth table for code converter example 

Note that the four BCD input variables may have 16 bit combinations, but only 10 are listed in the 
truth table. Others designate “don’t care conditions”. 
 
3. Optimization  

a. 2-level optimization  
The k-maps are plotted to obtain simplified sum-of-products Boolean expressions for the 
outputs. Each of the four maps represents one of the outputs of the circuit as a function of 
the four inputs. 
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b. Multiple-level optimization  
This second optimization step reduces the number of gate inputs (and hence the no. gates). 

The following manipulation illustrates optimization with multiple-output circuits 

implemented with three levels of gates: 
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Fig: Logic Diagram of BCD- to-Excess-3 Code Converter 

4.4 Analysis Procedure 

The design of a combinational circuit starts from the verbal specifications of a required function and 

ends with a set of output Boolean functions or a logic diagram. The analysis of a combinational 

circuit is somewhat the reverse process. It starts with a given logic diagram and culminates with a 

set of Boolean functions, a truth table, or a verbal explanation of the circuit operation. 

Obtaining Boolean functions from logic diagram  
Steps in analysis:  

1. The first step in the analysis is to make sure that the given circuit is combinational and not 
sequential.  

2. Assign symbols to all gate outputs that are a function of the input variables. Obtain the Boolean 
functions for each gate.  

3. Label with other arbitrary symbols those gates that are a function of input variables and/or 
previously labeled gates. Find the Boolean functions for these gates.  

4. Repeat step 3 until the outputs of the circuit are obtained.  

5. By repeated substitution of previously defined functions, obtain the output Boolean functions 
in terms of input variables only.  

Analysis of the combinational circuit below illustrates the proposed procedure: 

 
We note that the circuit has three binary inputs, A, B, and C, and two binary outputs, F1 and F2. The 
outputs of various gates are labeled with intermediate symbols. The outputs of gates that are a 
function of input variables only are F2, T1 and T2. The Boolean functions for these three outputs are  

F2 = AB + AC + BC  
T1=A+B+C  
T2 = ABC  

Next we consider outputs of gates that are a function of already defined symbols:  
T3 = F2’T1  
F1 = T3 + T2 

The output Boolean function F2 just expressed is already given as a function of the inputs only. To 

obtain F1 as a function of A, B, and C, forms a series of substitutions as follows: 

 
If you want to determine the information-transformation task achieved by this circuit, you can 

derive the truth table directly from the Boolean functions and try to recognize a familiar operation. 

For this example, we note that the circuit is a full-adder, with F, being the sum output and F, the 

carry output. A, B, and C are the three inputs added arithmetically. 
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Obtaining truth-table from logic diagram  
The derivation of the truth table for the circuit is a straightforward process once the output Boolean 
functions are known. To obtain the truth table directly from the logic diagram without going through 
the derivations of the Boolean functions, proceed as follows:  
Steps in analysis:  
1. Determine the number of input variables to the circuit. For n inputs, form the 2n possible input 

combinations of 1's and 0's by listing the binary numbers from 0 to 2n – 1.  

2. Label the outputs of selected gates with arbitrary symbols.  

3. Obtain the truth table for the outputs of those gates that are a function of the input variables 
only.  

4. Proceed to obtain the truth table for the outputs of those gates that are a function of previously 
defined values until the columns for all outputs are determined.  

This process can be illustrated using the circuit above: 

 

We form the eight possible combinations for the three input variables. The truth table for F2 is 

determined directly from the values of A, B, and C, with F2 equal to 1 for any combination that has 

two or three inputs equal to 1. The truth table for F2’ is the complement of F2. The truth tables for 

T1 and T2 are the OR and AND functions of the input variables, respectively. The values for T3 are 

derived from T1 and F2’. T3 is equal to 1 when both T1 and F2’ are equal to 1, and to 0 otherwise. 

Finally, F1 is equal to 1 for those combinations in which either T2 or T3 or both are equal to 1. 

 
Inspection of the truth-table combinations for A, B, C, F1 and F2 of table above shows that it is 

identical to the truth-table of the full-adder. 

When a circuit with don't-care combinations is being analyzed, the situation is entirely different. We 

assume here that the don't-care input combinations will never occur. 

 

4.5 NAND, NOR, Ex-OR circuits 

 4.5.1 Concept of multi-level NAND and NOR circuits 

 To implement a Boolean function with NAND gates we need to obtain the simplified Boolean 

function in terms of Boolean operators and then convert the function to NAND logic. The conversion 

of an algebraic expression from AND, OR, and complement to NAND can be done by simple circuit-

manipulation techniques that change AND-OR diagrams to NAND diagrams. 

 

To obtain a multilevel NAND diagram from a Boolean expression, proceed as follows:  
1. From the given Boolean expression, draw the logic diagram with AND, OR, and inverter gates. 

Assume that both the normal and complement inputs are available.  

2. Convert all AND gates to NAND gates with AND-invert graphic symbols.  

3. Convert all OR gates to NAND gates with invert-OR graphic symbols.  

4. Check all small circles in the diagram. For every small circle that is not compensated by another 
small circle along the same line, insert an inverter (one-input NAND gate) or complement the input 
variable.  

 

Example: F = A + (B' + C) (D' + BE ') 
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Multi-level NOR circuits 

The NOR function is the dual of the NAND function. For this reason, all procedures and rules for NOR 
logic form a dual of the corresponding procedures and rules developed for NAND logic. Similar to 
NAND, NOR has also two graphic symbols: OR-invert and invert-AND symbol.  
The procedure for implementing a Boolean function with NOR gates is similar to the procedure 
outlined in the previous section for NAND gates:  
1. Draw the AND-OR logic diagram from the given algebraic expression. Assume that both the 

normal and complement inputs are available.  

2. Convert all OR gates to NOR gates with OR-invert graphic symbols.  

3. Convert all AND gates to NOR gates with invert-AND graphic symbols.  

4. Any small circle that is not compensated by another small circle along the same line needs an 
inverter or the complementation of the input variable.  

 
Example: F = (AB + E) (C + D) 

 
 4.5.2 Realization of Ex-OR using basic gates and universal gates 

Ex-OR function  
The exclusive-OR (XOR) denoted by the symbol ⊕, is a logical operation that performs the following 
Boolean operation:  

x ⊕ y = xy' + x'y  
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It is equal to 1 if only x is equal to 1 or if only y is equal to 1 but not when both are equal.  
 
Realization of XOR using Basic gates and universal gates  
A two-input exclusive-OR function is constructed with conventional gates using two inverters, two 

AND gates, and an OR gate and next firgure shows the implementation of the exclusive-OR with four 

NAND gates. 

 
Fig: Implementation XOR with AND-OR-NOT gates 

 
Fig: Realization of XOR with NAND gates 

 

In second diagram, first NAND gate performs the operation (xy)' = (x' + y'). The other two-level NAND 
circuit produces the sum of products of its inputs:  
(x' + y')x + (x' + y')y = xy' + x'y = x ⊕ y 

 

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR operations. 

Nevertheless, this function emerges quite often during the design of digital systems. It is particularly 

useful in arithmetic operations and error-detection and correction circuits. 

 

 4.5.3 Parity Generator, Parity checker 

 
Exclusive-OR functions are very useful in systems requiring error-detection and correction codes. As 
discussed before, a parity bit is used for the purpose of detecting errors during transmission of 
binary information. A parity bit is an extra bit included with a binary message to make the number of 
1's either odd or even. The message, including the parity bit, is transmitted and then checked at the 
receiving end for errors. An error is detected if the checked parity does not correspond with the one 
transmitted. 
The circuit that generates the parity bit in the transmitter is called a parity generator.  
The circuit that checks the parity in the receiver is called a parity checker.  
 
Example: Consider a 3-bit message to be transmitted together with an even parity bit.  
The three bits, x, y, and z, constitute the message and are the inputs to the circuit. The parity bit P is 
the output. For even parity, the bit P must be generated to make the total number of 1’s even 
(including P). 



Digital Logic 

© Mr. Bishwo Prakash Pokharel Page 57 

 
Table: Even parity generator truth table 

From the truth table, we see that P constitutes an odd function because it is equal to 1 for those 
minterms whose numerical values have an odd number of 1’s. Therefore, P can be expressed as a 
three-variable exclusive-OR function: P = x ⊕ y ⊕ z. 
 
The three bits in the message together with the parity bit are transmitted to their destination, where 
they are applied to a parity-checker circuit to check for possible errors in the transmission. 

 
Table: Even parity checker truth table 

 Since the information was transmitted with even parity, the four bits received must have an 
even number of 1's. An error occurs during the transmission if the four bits received have an 
odd number of 1's, indicating that one bit has changed in value during transmission.  

 The output of the parity checker, denoted by C, will be equal to 1 if an error occurs, that is, if 
the four bits received have an odd number of 1’s.  

 The parity checker can be implemented with exclusive-OR gates: C = x ⊕y ⊕z ⊕ P.  

Logic diagrams for parity generator and Parity checker are shown below: 

 



Digital Logic 

© Mr. Bishwo Prakash Pokharel Page 58 

 
 

Unit 5:  Combinational Logic with  

MSI and LSI 

 

Introduction  
The purpose of Boolean-algebra simplification is to obtain an algebraic expression that, when 
implemented, results in a low-cost circuit. Two circuits that perform the same function, the one that 
requires fewer gates is preferable because it will cost less. But this is not necessarily true when 
integrated circuits are used. With integrated circuits, it is not the count of gates that determines the 
cost, but the number and types of ICs employed and the number of interconnections needed to 
implement the digital circuits of varying complexities (I mean circuits with different level of 
integrations viz. SSI, MSI, LSI, VLSI, ULSI etc).  
There are several combinational circuits that are employed extensively in the design of digital 
systems. These circuits are available in integrated circuits and are classified as MSI components. MSI 
components perform specific digital functions commonly needed in the design of digital systems.  
Combinational circuit-type MSI components that are readily available in IC packages are binary 

adders, subtractors, comparators, decoders, encoders, and multiplexers. These components are also 

used as standard modules within more complex LSI and VLSI circuits and hence used extensively as 

basic building blocks in the design of digital computers and systems. 

 

5.1 Adders 

 5.1.1 4-bit parallel binary adder 

This circuit sums up two binary numbers A and B of n-bits using full-adders to add each bit-pair & 
carry from previous bit position. The sum of A and B can be generated in two ways: either in a serial 
fashion or in parallel.  

 The serial addition method uses only one full-adder circuit and a storage device to hold the 
generated output carry. The pair of bits in A and B are transferred serially, one at a time, 
through the single full-adder to produce a string of output bits for the sum. The stored 
output carry from one pair of bits is used as an input carry for the next pair of bits.  

 The parallel method uses n full-adder circuits, and all bits of A and B are applied 
simultaneously. The outputs carry from one full-adder is connected to the input carry of the 
full-adder one position to its left. As soon as the carries are generated, the correct sum bits 
emerge from the sum outputs of all full-adders.  

 

Binary Parallel adder  
A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary numbers in 
parallel. It consists of full-adders connected in a chain, with the output carry from each full-adder 
connected to the input carry of the next full-adder in the chain.  
Diagram below shows the interconnection of four full-adder (FA) circuits to provide a 4-bit binary 

parallel adder. The augend bits of A and the addend bits of B are designated by subscript numbers 

from right to left. The carries are connected in a chain through the full-adders. The S outputs 

generate the required sum bits. The input carry to the adder is C1 and the output carry is C5. 

 

When the 4-bit full-adder circuit is enclosed within an IC package, it has four terminals for the 

augend bits, four terminals for the addend bits, four terminals for the sum bits, and two terminals 

for the input and output carries. 
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Fig: 4-bit parallel binary adder 

The 4-bit binary-adder is a typical example of an MSI function. It can be used in many applications 

involving arithmetic operations. Observe that the design of this circuit by the classical method would 

require a truth table with 29 = 512 entries, since there are 9 inputs to the circuit. By using an iterative 

method of cascading an already known function, we were able to obtain a simple and well-organized 

implementation. 

 

The carry propagation time is a limiting factor on the speed with which two numbers are added in 

parallel. Although a parallel adder, or any combinational circuit, will always have some value at its 

output terminals, the outputs will not be correct unless the signals are given enough time to 

propagate through the gates connected from the inputs to the outputs. Since all other arithmetic 

operations are implemented by successive additions, the time consumed during the addition process 

is very critical. An obvious solution for reducing the carry propagation delay time is to employ faster 

gates with reduced delays. But physical circuits have a limit to their capability. Another solution is to 

increase the equipment complexity in such a way that the carry delay time is reduced. There are 

several techniques for reducing the carry propagation time in a parallel adder. The most widely used 

technique employs the principle of look-ahead carry. 

 

 5.1.2 Decimal Adder – BCD adder 

Computers or calculators that perform arithmetic operations directly in the decimal number system 
represent decimal numbers in binary-coded form.  
 

Decimal adder is a combinational circuit that sums up two decimal numbers adopting particular 
encoding technique.  

 A decimal adder requires a minimum of nine inputs and five outputs, since four bits are 
required to code each decimal digit and the circuit must have an input carry and output 
carry.  

 Of course, there is a wide variety of possible decimal adder circuits, dependent upon the 
code used to represent the decimal digits.  

 
BCD Adder  
This combinational circuit adds up two decimal numbers when they are encoded with binary-coded 
decimal (BCD) form.  

 Adding two decimal digits in BCD, together with a possible carry, the output sum cannot be 
greater than 9 + 9 + 1 = 19.  

 Applying two BCD digits to a 4-bit binary adder, the adder will form the sum in binary 
ranging from 0 to 19. These binary numbers are listed in Table below and are labeled by 
symbols K, Z8, Z4, Z2, Z1. K is the carry, and the subscripts under the letter z represent the 
weights 8, 4, 2, and 1 that can be assigned to the four bits in the BCD code.  
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 The first column in the table lists the binary sums as they appear in the outputs of a 4-bit 
binary adder. 

 The output sum of two decimal digits must be represented in BCD and should appear in the 
form listed in the second column. 

 The problem is to find a simple rule by which the binary number, in the first column can be 
converted to the correct BCD-digit representation of the number in the second column. 

Looking at the table, we see that:  
When (binary sum) <= 1001  
Corresponding BCD number is identical, and therefore no conversion is needed.  
When (binary sum) > 1001  
Non-valid BCD representation is obtained. The addition of binary 6 (0110) to the binary sum converts 
it to the correct BCD representation and also produces an output carry as required.  
The logic circuit that detects the necessary correction can be derived from the table entries.  
Correction is needed when  

o The binary sum has an output carry K = 1.  

o The other six combinations from 1010 to 1111 that have Z8=1. To distinguish them from 
binary 1000 and 1001, which also have a 1 in position Z8, we specify further that either Z4 
or Z2 must have a 1. The condition for a correction and an output carry can be expressed 
by the Boolean function  

C = K + Z8Z4 + Z8Z2  
When C = 1, it is necessary to add 0110 to the binary sum and provide an output carry for the 

next stage.  
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 A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum digit also in 
BCD. 

 BCD adder must include the correction logic in its internal construction. 

 To add 0110 to the binary sum, we use a second 4-bit binary adder, as shown in diagram. 

 The two decimal digits, together with the input carry, are first added in the top 4-bit binary 
adder to produce the binary sum. 

 When the output carry = 0, nothing is added to the binary sum. When it is equal to 1, binary 
0110 is added to the binary sum through the bottom 4-bit binary adder. 

 The output carry generated from the bottom binary adder can be ignored, since it supplies 
information already available at the output-carry terminal. 

A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from 

one stage must be connected to the input carry of the next higher order stage. 

The BCD adder can be constructed with three IC packages. Each of the 4-bit adders is an MST 
function and the three gates for the correction logic need one SST package. However, the BCD adder 
is available in one MSI circuit. To achieve shorter propagation delays, an MSI BCD adder includes the 
necessary circuits for look-ahead carries. The adder circuit for the correction does not need all four 
full-adders, and this circuit can be optimized within the IC package. 
 
5.2 Magnitude comparator 

 5.2.1 Definition 

A Magnitude comparator is a combinational circuit that compares two numbers, A and B, and 
determines their relative magnitudes. The outcome of the comparison is specified by three binary 
variables that indicate whether A > B, A = B, or A < B.  
Consider two numbers, A and B, with four digits each. Write the coefficients of the numbers with 
descending significance as follows:  

A = A3A2A1A0  
B = B3B2B1B0  
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Where each subscripted letter represents one of the digits in the number, the two numbers are 
equal if all pairs of significant digits are equal, i.e., if A3 = B3 and A2 = B2 and A1 = B1 and A0 = B0.  
When the numbers are binary, the digits are either 1 or 0 and the equality relation of each pair of 
bits can be expressed logically with an equivalence function:  

Xi = AiBi + Ai’Bi’, i = 0, 1, 2, 3  
Where Xi = 1 only if the pair of bits in position i are equal, i.e., if both are 1's or both are 0's. 

 
Algorithm  

(A = B)  
For the equality condition to exist, all Xi variables must be equal to 1. This dictates an AND operation 
of all variables:  

(A = B) = X3X2X1X0  
The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.  

(A<B) or (A>B)  
To determine if A is greater than or less than B, we check the relative magnitudes of pairs of 
significant digits starting from the most significant position. If the two digits are equal, we compare 
the next lower significant pair of digits. This comparison continues until a pair of unequal digits is 
reached.  
 
A > B: If the corresponding digit of A is 1 and that of B is 0.  
A < B: If the corresponding digit of A is 0 and that of B is 1.  
 
The sequential comparison can be expressed logically by the following two Boolean functions:  
(A > B) = A3B3’ + X3A2B2’ + x3x2A1B1’ + X3X2X1A0B0’  
(A < B) = A3’B3 + X3A2’B2 + x3x2A1’B1 + X3X2X1A0’B0  
The symbols (A > B) and (A < B) are binary output variables that are equal to 1 when A > B or A < B 

respectively. 
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Fig: 4 bit magnitude comparator 

 



 The gate implementation of the three output variables (A=B), (A<B) and (A>B) derived is 
simpler than it seems because it involves a certain amount of repetition. 

 Four X outputs can be generated. Equivalence (exclusive NOR) circuits and applied to an AND 
gate to give the output binary variable (A = B). 

 

5.3 Decoder 

Decoders and Encoders  
Discrete quantities of information are represented in digital systems with binary codes. A binary 
code of n bits is capable of representing up to 2n distinct elements of the coded information.  

 Decoder is a combinational circuit that converts binary information from n input lines to a 
maximum of 2n unique output lines.  
If the n-bit decoded information has unused or don't-care combinations, the decoder output 
will have fewer than 2n outputs.  
n-to-m-line decoders have m <= 2n.  

 Encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 
2n (or fewer) input lines and n output lines. The output lines generate the binary code 
corresponding to the input value.  
An example of an encoder is the octal-to-binary encoder which has eight inputs, one for 
each of the octal digits, and three outputs that generate the corresponding binary number.  
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Example: 3-to-8 line decoder  
The 3 inputs are decoded into 8 outputs, each output representing one of the minterms of the 3-

input variables. 

 
Table: Truth-table for 3-to-8 line Decoder 

Output variables are mutually exclusive because only one output can be equal to 1 at anyone time. 

The output line whose value is equal to 1 represents the minterm equivalent of the binary number 

presently available in the input lines. 

 
Fig: 3-to-8 line decoder 

 

 
Encoders: 
An encoder is a digital function that produces a reverse operation from that of a decoder. An 
encoder has 2n (or less) input lines and n output lines. The output lines generate the binary code for 
the 2n input variables. An example of an encoder is shown in following figure. The octal-to-binary 
encoder consists of eight inputs, one for each of the eight digits, and three outputs that generate the 
corresponding binary number. It is constructed with OR gate whose inputs can be determined from 
the truth table. The low-order output bit z is 1 if the input octal digit is odd. Output y is 1 for octal 
digit 2,3,6 or 7. Output x is a 1 for 1 for octal digits 4,5,6 or 7. D0 is not connected to any OR gate; the 
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binary output must be all 0’s. This discrepancy can be resolved by providing one more output to 
indicate the fact that all inputs are not 0’s.  

 
Fig: Truth table of octal-to-binary encoder 

 
Fig: Octal-to-binary encoder 

 
Combinational logic Implementation  
A decoder provides the 2n minterm of n input variables. Since any Boolean function can be expressed 
in sum of minterms canonical form, one can use a decoder to generate the minterms and an 
external OR gate to form the sum.  

 Any combinational circuit with n inputs and m outputs can be implemented with an n-to-
2n- line decoder and m OR gates.  

 Boolean functions for the Decoder-implemented-circuit are expressed in sum of minterms. 
This form can be easily obtained from the truth table or by expanding the functions to their 
sum of minterms.  

 
Example: Implement a full-adder circuit with a decoder.  
Solution: From the truth table of the full-adder, we obtain the functions for this combinational 

circuit in sum of minterms as: 

 
Since there are three inputs and a total of eight minterms, we need a 3-to-8-line decoder. 
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Fig: Implementation of Full-adder with a decoder circuit 

Decoder generates the eight minterms for x, y, z.  
The OR gate for output S forms the sum of minterms 1, 2, 4, and 7.  
The OR gate for output C forms the sum of minterms 3, 5, 6, and 7.  
 

5.4 Multiplexers 

A digital multiplexer is a combinational circuit that selects binary information from one of many 
input lines and directs it to a single output line.  

o The selection of a particular input line is controlled by a set of selection lines.  
o Normally, there are 2n input lines and n selection lines whose bit combinations determine 
which input is selected.  

A demultiplexer is a circuit that receives information on a single line and transmits this 
information on one of 2n possible output lines. The selection of a specific output line is controlled 
by the bit values of n selection lines.  

o A Decoder with an enable input can function as a demultiplexer.  

o Here, enable input and input variables for decoder is taken as data input line and selection 
lines for the demultiplexer respectively.  

 
Boolean Function implementation  
As decoder can be used to implement a Boolean function by employing an external OR gate, we can 
implement any Boolean function (in SOP) with multiplexer since multiplexer is essentially a decoder 
with the OR gate already available.  
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If we have a Boolean function of n + 1 variables, we take n of these variables and connect them 
to the selection lines of a multiplexer. The remaining single variable of the function is used for 
the inputs of the multiplexer. If A is this single variable, the inputs of the multiplexer are chosen 
to be either A or A' or 1 or 0. By judicious use of these four values for the inputs and by 
connecting the other variables to the selection lines, one can implement any Boolean function 
with a multiplexer.  

So, it is possible to generate any function of n + 1 variables with a 2n-to-1 multiplexer.  
 
Example: Implement Boolean function F(A,B,C)= Σ(1,3,5,6) with multiplexer.  
Solution: The function can be implemented with a 4-to-1 multiplexer, as shown in Fig. below. Two of 

the variables, B and C, are applied to the selection lines in that order, i.e., B is connected to s1 and C 

to s0. The inputs of the multiplexer are 0, 1, A and A'. 

 
Most important thing during this implementation is the implementation table which is derived from 

following rules:  
List the inputs of the multiplexer and under them list all the minterms in two rows. The first row lists 

all those minterms where A is complemented, and the second row all the minterms with A 
uncomplemented, as shown in above example. Circle all the minterms of the function and 
inspect each column separately.  

If the two minterms in a column are not circled, apply 0 to the corresponding multiplexer input.  

If the two minterms are circled, apply 1 to the corresponding multiplexer input.  

If the bottom minterm is circled and the top is not circled, apply A to the corresponding 
multiplexer input.  

If the top minterm is circled and the bottom is not circled, apply A' to the corresponding 
multiplexer input.  

 
 

5.5 Read-Only-Memory (ROM) 

A read-only memory (ROM) is a device that includes both the decoder and the OR gates within a 
single IC package. The connections between the outputs of the decoder and the inputs of the OR 
gates can be specified for each particular configuration. The ROM is used to implement complex 
combinational circuits within one IC package or as permanent storage for binary information.  
 

A ROM is essentially a memory (or storage) device in which permanent binary information is 

stored. The binary information must be specified by the designer and is then embedded in the 

unit to form the required interconnection pattern. ROMs come with special internal electronic 

fuses that can be "programmed" for a specific configuration. Once the pattern is established, it 

stays within the unit even when power is turned off and on again. 
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It consists of n input lines and m output lines. Each bit combination of the input variables is 

called an address. Each bit combination that comes out of the output lines is called a word. The 

number of bits per word is equal to the number of output lines, m. An address is essentially a 

binary number that denotes one of the minterms of n variables. The number of distinct 

addresses possible with n input variables is 2n. 

 

Example: 32 x 4 ROM (unit consists of 32 words of 8 bits each) 

 
The five input variables are decoded into 32 lines. Each output of the decoder represents one of the 

minterms of a function of five variables. Each one of the 32 addresses selects one and only one 

output from the decoder. The address is a 5-bit number applied to the inputs, and the selected 

minterm out of the decoder is the one marked with the equivalent decimal number. The 32 outputs 

of the decoder are connected through fuses to each OR gate. Only four of these fuses are shown in 

the diagram, but actually each OR gate has 32 inputs and each input goes through a fuse that can be 

blown as desired. 

 
Combinational Logic Implementation  
From the logic diagram of the ROM, it is clear that each output provides the sum of all the minterms 
of the n input variables. Remember that any Boolean function can be expressed in sum of minterms 
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form. By breaking the links of those minterms not included in the function, each ROM output can be 
made to represent the Boolean function.  
For an n-input, m-output combinational circuit, we need a 2n x m ROM.  

The blowing of the fuses is referred to as programming the ROM.  

The designer need only specify a ROM program table that gives the information for the required 
paths in the ROM. The actual programming is a hardware procedure that follows the 
specifications listed in the program table.  

Example: Consider a following truth table: 

 
Truth table specifies a combinational circuit with 2 inputs and 2 outputs. The Boolean function can 

be represented in SOP: 

 

 

 
Fig: Combinational-circuit implementation with a 4 x 2 ROM 

 

Diagram shows the internal construction of a 4X2 ROM. It is now necessary to determine which of 

the eight available fuses must be blown and which should be left intact. This can be easily done from 

the output functions listed in the truth table. Those minterms that specify an output of 0 should not 

have a path to the output through the OR gate. Thus, for this particular case, ti1e truth table shows 

three 0's, and their corresponding fuses to the OR gates must be blown. 
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This example demonstrates the general procedure for implementing any combinational circuit with a 
ROM. From the number of inputs and outputs in the combinational circuit, we first determine the 
size of ROM required. Then we must obtain the programming truth table of the ROM; no other 
manipulation or simplification is required. The 0's (or 1's) in the output functions of the truth table 
directly specify those fuses that must be blown to provide the required combinational circuit in sum 
of min terms form.  
Question: Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and 

generates an output binary number equal to the square of the input number. 

 

Types of ROM  
ROMs: For simple ROMs, mask programming is done by the manufacturer during the fabrication 
process of the unit. The procedure for fabricating a ROM requires that the customer fill out the truth 
table the ROM is to satisfy. The truth table may be submitted on a special form provided by the 
manufacturer. The manufacturer makes the corresponding mask for the paths to produce the 1's 
and 0's according to the customer's truth table. This procedure is costly because the vendor charges 
the customer a special fee for custom masking a ROM. For this reason, mask programming is 
economical only if large quantities of the same ROM configuration are to be manufactured.  
 

PROMs: Programmable read-only memory or PROM units contain all 0's (or all 1's) in every bit of the 

stored words. The approach called field programming is applied for fuses in the PROM which are 

blown by application of current pulses through the output terminals. This allows the user to program 

the unit in the laboratory to achieve the desired relationship between input addresses and stored 

words. Special units called PROM programmers are available commercially to facilitate this 

procedure. In any case, all procedures for programming ROMs are hardware procedures even 

though the word programming is used. 

 

EPROMs: The hardware procedure for programming ROMs or PROMs is irreversible and, once 

programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been 

established, the unit must be discarded if the bit pattern is to be changed. A third type of unit 
available is called erasable PROM, or EPROM. EPROMs can be restructured to the initial value (all 0's 
or all 1's) even though they have been changed previously. When an EPROM is placed under a 
special ultraviolet light for a given period of time, the shortwave radiation discharges the internal 
gates that serve as contacts. After erasure, the ROM returns to its initial state and can be 
reprogrammed.  
 

EEPROMs: Certain ROMs can be erased with electrical signals instead of ultraviolet light, and these 

are called electrically erasable PROMs, or EEPROMs. 

 

The function of a ROM can be interpreted in two different ways:  
The first interpretation is of a unit that implements any combinational circuit. From this point of 

view, each output terminal is considered separately as the output of a Boolean function 
expressed in sum of minterms.  

The second interpretation considers the ROM to be a storage unit having a fixed pattern of bit 
strings called words. From this point of view, the inputs specify an address to a specific stored 
word, which is then applied to the outputs. This is the reason why the unit is given the name 
read-only memory. Memory is commonly used to designate a storage unit. Read is commonly 
used to signify that the contents of a word specified by an address in a storage unit is placed at 
the output terminals. Thus, a ROM is a memory unit with a fixed word pattern that can be read 
out upon application of a given address.  
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5.6 Programmable Logic Array (PLA) 

Programmable Logic Array (PLA)  
A combinational circuit may occasionally have don't-care conditions. When implemented with a 
ROM, a don't care condition becomes an address input that will never occur. The words at the don't-
care addresses need not be programmed and may be left in their original state (all 0's or all 1's). The 
result is that not all the bit patterns available in the ROM are used, which may be considered a waste 
of available equipment.  
Definition: Programmable Logic Array or PLA is LSI component that can be used in economically as 

an alternative to ROM where number of don’t-care conditions is excessive. 

 
 

 5.6.2 Block diagram of PLA 

A block diagram of the PLA is shown in Fig. below. It consists of n inputs, m outputs, k product terms, 

and m sum terms. The product terms constitute a group of k AND gates and the sum terms 

constitute a group of m OR gates. Fuses are inserted between all n inputs and their complement 

values to each of the AND gates. Fuses are also provided between the outputs of the AND gates and 

the inputs of the OR gates. 

 
 

PLA program table and Boolean function Implementation  
The use of a PLA must be considered for combinational circuits that have a large number of inputs 
and outputs. It is superior to a ROM for circuits that have a large number of don't-care conditions. 
Let me explain the example to demonstrate how PLA is programmed.  
 

Consider a truth table of the combinational circuit: 
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PLA implements the functions in their sum of products form (standard form, not necessarily 

canonical as with ROM). Each product term in the expression requires an AND gate. It is necessary to 

simplify the function to a minimum number of product terms in order to minimize the number of 

AND gates used. The simplified functions in sum of products are obtained from the following maps: 

 
There are three distinct product terms in this combinational circuit: AB’, AC and BC. The circuit has 

three inputs and two outputs; so the PLA can be drawn to implement this combinational circuit. 

 
Programming the PLA means, we specify the paths in its AND-OR-NOT pattern. A typical PLA 
program table consists of three columns.  
First column: lists the product terms numerically.  
Second column: specifies the required paths between inputs and AND gates.  
Third column: specifies the paths between the AND gates and the OR gates.  
Under each output variable, we write a T (for true) if the output inverter is to be bypassed, and C 

(for complement) if the function is to be complemented with the output inverter. 
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For each product term, the inputs are marked with 1, 0 or - (dash).  

 If a variable in the product term appears in its normal form (unprimed), the corresponding 
input variable is marked with a 1.  

 If it appears complemented (primed), the corresponding input variable is marked with a 0.  

 If the variable is absent in the product term, it is marked with a dash.  
 
Each product term is associated with an AND gate. The paths between the inputs and the AND gates 
are specified under the column heading inputs. A 1 in the input column specifies a path from the 
corresponding input to the input of the AND gate that forms the product term. A 0 in the input 
column specifies a path from the corresponding complemented input to the input of the AND gate. A 
dash specifies no connection.  
The appropriate fuses are blown and the ones left intact form the desired paths. It is assumed that 
the open terminals in the AND gate behave like a 1 input. The paths between the AND and OR gates 
are specified under the column heading outputs. The output variables are marked with 1's for all 
those product terms that formulate the function. We have  

F1 = AB' + AC 
So F1 is marked with 1's for product terms 1 and 2 and with a dash for product term 3. Each product 

term that has a 1 in the output column requires a path from the corresponding AND gate to the 

output OR gate. 
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Unit 6:  Sequential Logic 

Introduction  
Till now, we study combinational circuits in which the outputs at any instant of time are entirely 

dependent upon the inputs present at that time. Although every digital system is likely to have 

combinational circuits, most systems encountered in practice also include memory elements, which 

require that the system be described in terms of sequential logic. 

 
 

 Memory elements are devices capable of storing binary information within them. The binary 
information stored in the memory elements at any given time defines the state of the 
sequential circuit.  

 Block diagram shows external outputs in a sequential circuit are a function not only of 
external inputs, but also of the present state of the memory elements. Thus, a sequential 
circuit is specified by a time sequence of inputs, outputs, and internal states.  

 There are two main types of sequential circuits. Their classification depends on the timing of 
their signals.  



Synchronous sequential circuit: whose behavior can be defined from the knowledge of its signals 
at discrete instants of time  

 A synchronous sequential logic system, by definition, must employ signals that affect the 
memory elements only at discrete instants of time. One way of achieving this goal is to use 
pulses of limited duration throughout the system so that one pulse-amplitude represents 
logic-1 and pulse amplitude (or the absence of a pulse) represents logic-0. The difficulty with 
a system of pulses is that any two pulses arriving from separate independent sources to the 
inputs of the same gate will exhibit unpredictable delays, will separate the pulses slightly, 
and will result in unreliable operation.  

 Practical synchronous sequential logic systems use fixed amplitudes such as voltage levels 
for the binary signals. Synchronization is achieved by a timing device called a master-clock 
generator, which generates a periodic train of clock pulses. The clock pulses are distributed 
throughout the system in such a way that memory elements are affected only with the 
arrival of the synchronization pulse. Synchronous sequential circuits that use clock pulses in 
the inputs of memory elements are called clocked sequential circuits. Clocked sequential 
circuits are the type encountered most frequently. They do not manifest instability problems 
and their timing is easily divided into independent discrete steps, each of which is 
considered separately. The sequential circuits discussed in this chapter are exclusively of the 
clocked type.  
 

Asynchronous sequential circuit: Behavior depends upon the order in which its input signals 
change and can be affected at any instant of time. The memory elements commonly used in 
asynchronous sequential circuits are time-delay devices.  
 
Information storage in digital system  

 Fig (a) shows a buffer which has a propagation delay tpd and can store information for time 
tpd since buffer input at time t reaches to its output at time tpd. But, in general, we wish to 
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store information for an indefinite time that is typically much longer than the time delay of 
one or even many gates. This stored value is to be changed at arbitrary times based on the 
inputs applied to the circuit and should not depend on the specific time delay of a gate.  

 In Fig (b) we have output of buffer connected to its input making a feedback path. This time 
input to buffer has been 0 for at least time tpd. Then the output produced by the buffer will 
be 0 at time t + tpd. This output is applied to the input so that the output will also be 0 at 
time 1 + 2tpd. This relationship between input and output holds for all t, so the 0 will be 
stored indefinitely.  

 A buffer is usually implemented by using two inverters, as shown in Fig (d). The signal is 
inverted twice, i.e. (X’)’ = X, giving no net inversion of the signal around the loop.  

 

 
 

 In fact, this example is an illustration of one of the most popular methods of implementing 
storage in computer memories.  

 With inverters there is no way to change the information stored. By replacing the inverters 
with NOR or NAND gates, the information can be changed. Asynchronous storage circuits 
called latches are made in this manner.  

 

Flip-Flops  
The memory elements used in clocked sequential circuits are called flip-flops. These circuits are 
binary cells capable of storing one bit of information. A flip-flop circuit has two outputs, one for the 
normal value and one for the complement value of the bit stored in it. Binary information can enter 
a flip-flop in a variety of ways, a fact that gives rise to different types of flip-flops.  

 A flip-flop circuit can maintain a binary state indefinitely (as long as power is delivered to the 
circuit) until directed by an input signal to switch states.  

 The major differences among various types of flip-flops are in the number of inputs they 
possess and in the manner in which the inputs affect the binary state.  

 
Basic flip-flop circuit (direct-coupled RS flip-flop or SR latch)  
A flip-flop circuit can be constructed from two NAND gates or two NOR gates. These constructions 

are shown in the logic diagrams below. Each circuit forms a basic flip-flop upon which other more 

complicated types can be built. The cross-coupled connection from the output of one gate to the 

input of the other gate constitutes a feedback path. For this reason, the circuits are classified as 

asynchronous sequential circuits. Each flip-flop has two outputs, Q and Q', and two inputs, set and 

reset. 
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 Output of a NOR gate is 0 if any input is 1, and that the output is 1 only when all inputs are 0.  

 First, assume that the set input is 1 and the reset input is 0. Since gate-2 has an input of 1, its 
output Q' must be 0, which puts both inputs of gate-1 at 0, so that output Q is 1. When the 
set input is returned to 0, the outputs remain the same i.e. output Q' stay at 0, which leaves 
both inputs of gate-1 at 0, so that output Q is 1.  

 Similarly, 1 in the reset input changes output Q to 0 and Q' to 1. When the reset input 
returns to 0, the outputs do not change.  

 When a 1 is applied to both the set and the reset inputs, both Q and Q' outputs go to 0. This 
condition violates the fact that outputs Q and Q' are the complements of each other. In 
normal operation, this condition must be avoided by making sure that 1's are not applied to 
both inputs simultaneously.  

 

A flip-flop has two useful states.  
Set state: When Q = 1 and Q' = 0, (or 1-state),  
Reset state: When Q = 0 and Q' = 1, (or 0-state)  
The outputs Q and Q' are complements of each other and are referred to as the normal and 
complement outputs, respectively. The binary state of the flip-flop is taken to be the value of the 
normal output.  
Under normal operation, both inputs remain at 0 unless the state of the flip-flop has to be changed. 

The application of a momentary 1 to the set input causes the flip-flop to go to the set state. The set 

input must go back to 0 before a 1 is applied to the reset input. A momentary 1 applied to the reset 

input causes the flip-flop to go the clear state. When both inputs are initially 0, a 1 applied to the set 

input while the flip-flop is in the set state or a 1 applied to the reset input while the flip-flop is in the 

clear state, leaves the outputs unchanged. 

 

 


 The NAND basic flip-flop circuit operates with both inputs normally at 1 unless the state of 
the flip-flop has to be changed.  
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 The application of a momentary 0 to the set input causes output Q to go to 1 and Q' to go to 
0, thus putting the flip-flop into the set state  

 After the set input returns to 1, a momentary 0 to the reset input causes a transition to the 
clear state.  

 When both inputs go to 0, both outputs go to 1- a condition avoided in normal flip-flop 
operation.  

 The operation of the basic flip-flop can be modified by providing an additional control input 
that determines when the state of the circuit is to be changed. This fact arises 4 common 
types of flip-flops and are discussed in what follows:  

 
1. RS Flip-Flop  
 
It consists of a basic flip-flop circuit and two additional NAND gates along with clock pulse (CP) input. 

The pulse input acts as an enable signal for the other two inputs. 



 When the pulse input goes to 1, information from the S or R input is allowed to reach the 
output.  

 Set state: S = 1, R = 0, and CP = 1.  

 Reset state: S = 0, R = 1, and CP = 1.  

 In either case, when CP returns to 0, the circuit remains in its previous state. When CP = 1 
and both the S and R inputs are equal to 0, the state of the circuit does not change.  
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(c) Graphical Symbol 

Q(t+1) = S+ R’Q 

(d) Characteristic equation 

Characteristic Table:  
Q [Q (t)] is referred to as the present state i.e. binary state of the flip-flop before the application of 

a clock pulse.  
Given the present state Q and the inputs S and R, the application of a single pulse in the CP 

input causes the flip-flop to go to the next state, Q(t + 1).  
 
Characteristic equation  
The characteristic equation of the flip-flop specifies the value of the next state as a function of the 

present state and the inputs.  
 
Graphic symbol  

The graphic symbol of the RS flip-flop consists of a rectangular-shape block with inputs S, R, and 

C. The outputs are Q and Q', where Q' is the complement of Q (except in the indeterminate 

state). 

 

D Flip-Flop  
One way to eliminate the undesirable condition of the indeterminate state in the RS flip-flop is to 
ensure that inputs S and R are never equal to 1 at the same time. This is done in the D flip-flop 
shown in Fig. below. The D flip-flop has only two inputs: D and CP. The D input goes directly to the S 
input and its complement is applied to the R input.  

 As long as CP is 0, the outputs of gates 3 and 4 are at the 1 level and the circuit cannot 
change state regardless of the value of D.  

 The D input is sampled when CP = 1.  

 If D is 1, the Q output goes to 1, placing the circuit in the set state.  

 If D is 0, output Q goes to 0 and the circuit switches to the clear state.  
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JK Flip-Flop  
A JK flip-flop is a refinement of the RS flip-flop in that the indeterminate state of the RS type is 
defined in the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-flop, 
respectively. The input marked J is for set and the input marked K is for reset. When both inputs J 
and K are equal to 1, the flip-flop switches to its complement state, that is, if Q = 1, it switches to Q = 
0, and vice versa.  
A JK flip-flop constructed with two cross-coupled NOR gates and two AND gates is shown in Fig. 

below: 

 
T Flip-Flop  
The T flip-flop is a single-input version of the JK flip-flop and is obtained from the JK flip-flop when 
both inputs are tied together. The designation T comes from the ability of the flip-flop to "toggle," or 
complement, its state. Regardless of the present state, the flip-flop complements its output when 
the clock pulse occurs while input T is 1. The characteristic table and characteristic equation show 
that:  

 When T = 0, Q(t + 1) = Q, that is, the next state is the same as the present state and no 
change occurs.  
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 When T = 1, then Q (t + 1) = Q', and the state of the flip-flop is complemented.  
 

 

 
Triggering of Flip-Flops  
The state of a flip-flop is switched by a momentary change in the input signal. This momentary 
change is called a trigger and the transition it causes is said to trigger the flip-flop. Clocked flip-flops 
are triggered by pulses. A pulse starts from an initial value of 0, goes momentarily to 1, and after a 
short time, returns to its initial 0 value.  
A clock pulse may be either positive or negative.  

 A positive clock source remains at o during the interval between pulses and goes to 1 during 
the occurrence of a pulse. The pulse goes through two signal transitions: from 0 to 1 and the 
return from 1 to 0. As shown in Fig. below, the positive transition is defined as the positive 
edge and the negative transition as the negative edge.  

 This definition applies also to negative pulses.  
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Fig: Definition of clock pulse transition 

The clocked flip-flops introduced earlier are triggered during the positive edge of the pulse, and the 
state transition starts as soon as the pulse reaches the logic-1 level. The new state of the flip-flop 
may appear at the output terminals while the input pulse is still 1. If the other inputs of the flip-flop 
change while the clock is still 1, the flip-flop will start responding to these new values and a new 
output state may occur.  
Edge triggering is achieved by using a master -slave or edge triggered flip-flop as discussed in what 

follows. 

 
1. Master-slave Flip-Flop  
A master-slave flip-flop is constructed from two separate flip-flops. One circuit serves as a master 
and the other as a slave, and the overall circuit is referred to as a master slave flip-flop.  
RS master-slave flip-flop  
 
It consists of a master flip-flop, a slave flip-flop, and an inverter. When clock pulse CP is 0, the output 

of the inverter is 1. Since the clock input of the slave is 1, the flip-flop is enabled and output Q is 

equal to Y, while Q' is equal to Y'. The master flip-flop is disabled because CP = 0. When the pulse 

becomes 1, the information then at the external R and S inputs is transmitted to the master flip-flop. 

The slave flip-flop, however, is isolated as long as the pulse is at its 1 level, because the output of the 

inverter is 0. When the pulse returns to 0, the master flip-flop is isolated; this prevents the external 

inputs from affecting it. The slave flip-flop then goes to the same state as the master flip-flop. 

 
Fig: Logic diagram of master-slave flip-flop 

 



JK Master-slave Flip-Flop  
Master-slave JK flip-flop constructed with NAND gates is shown in Fig. below. It consists of two flip-
flops; gates 1 through 4 form the master flip-flop, and gates 5 through 8 form the slave flip-flop. The 
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information present at the J and K inputs is transmitted to the master flip-flop on the positive edge 
of a clock pulse and is held there until the negative edge of the clock pulse occurs, after which it is 
allowed to pass through to the slave flip-flop.  
Operation:  

 The clock input is normally 0, which prevents the J and K inputs from affecting the master 
flip-flop.  

 The slave flip-flop is a clocked RS type, with the master flip-flop supplying the inputs and the 
clock input being inverted by gate 9.  

 When the clock is 0, Q = Y, and Q' = Y'.  

 When the positive edge of a clock pulse occurs, the master flip-flop is affected and may 
switch states.  

 The slave flip-flop is isolated as long as the clock is at the 1 level  

 When the clock input returns to 0, the master flip-flop is isolated from the J and K inputs and 
the slave flip-flop goes to the same state as the master flip-flop.  

 
 

 
2. Edge-Triggered Flip-Flop  
Edge-triggered flip-flop (alternative to master-slave) synchronizes the state changes during clock-
pulse transitions. In this type of flip-flop, output transitions occur at a specific level of the clock 
pulse. When the pulse input level exceeds this threshold level, the inputs are locked out and the flip-
flop is therefore unresponsive to further changes in inputs until the clock pulse returns to 0 and 
another pulse occurs. Some edge-triggered flip-flops cause a transition on the positive edge of the 
pulse, and others cause a transition on the negative edge of the pulse.  
The logic diagram of a D-type positive-edge-triggered flip-flop is shown below. It consists of three 
basic flip-flops. NAND gates 1 and 2 make up one basic flip-flop and gates 3 and 4 another. The third 
basic flip-flop comprising gates 5 and 6 provides the outputs to the circuit. Inputs S and R of the third 
basic flip-flop must be maintained at logic-1 for the outputs to remain in their steady state values.  

When S = 0 and R = 1, the output goes to the set state with Q = 1.  

When S = 1 and R = 0, the output goes to the clear state with Q = 0.  
 
Inputs S and R are determined from the states of the other two basic flip-flops. These two basic flip-

flops respond to the external inputs D (data) and CP (clock pulse). 
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 Gates 1 to 4 are redrawn to show all possible transitions. Outputs S and R from gates 2 and 3 
go to gates 5 and 6  
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 Fig (a) shows the binary values at the outputs of the four gates when CP = 0. Input D may be 
equal to 0 or 1. In either case, a CP of 0 causes the outputs of gates 2 and 3 to go to 1, thus 
making S = R = 1, which is the condition for a steady state output.  

 When CP = 1  

 If D = 1 then S changes to 0, but R remains at 1, which causes the output of the flip-flop Q to 
go to 1 (set state).  

 If D = 0 then S = 1 and R = 0. Flip-flop goes to clear state (Q = 0).  
 

Analysis of Clocked Sequential Circuits  
The behavior of a sequential circuit is determined from the inputs, the outputs, and the state of its 
flip-flops. The outputs and the next state are both a function of the inputs and the present state. The 
analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of 
inputs, outputs, and internal states. It is also possible to write Boolean expressions that describe the 
behavior of the sequential circuit.  
A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops. The flip-flops may 
be of any type and the logic diagram may or may not include combinational circuit gates.  
 
Example  
An example of a clocked sequential circuit is shown in Fig. below. The circuit consists of two D flip-

flops A and B, an input x, and an output y. 

 
State Equations  
A state equation is an algebraic expression that specifies the condition for a flip-flop state transition. 
The left side of the equation denotes the next state of the flip-flop and the right side of the equation 
is a Boolean expression that specifies the present state and input conditions that make the next 
state equal to 1.  
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In above example, D inputs determine the flip-flop’s next state, so it is possible to write a set of next-
state equations for the circuit:  

A(t + 1) = A(t)x(t) + B(t)x(t)  
B(t + 1) = A '(t)x(t)  

 
Can be written conveniently as:  

A(t + 1) = Ax + Bx  
B(t + 1) = A'x  

Similarly, the present-state value of the output y can be expressed algebraically as follows:  
y(t) = [A(t) + B(t)]x'(t)  

Removing the symbol (t) for the present state, we obtain the output Boolean function:  
y = (A + B)x' 

State table  
The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table. The 

state table for the example circuit above is shown in the table below. 

 
 

 The table consists of four sections:  
Present state: shows the states of flip-flops A and B at any given time t  
Input: gives a value of x for each possible present state  
Next state: shows the states of the flip-flops one clock period later at time t + 1.  
Output: gives the value of y for each present state.  

 The derivation of a state table consists of first listing all possible binary combinations of 
present state and inputs.  

 Next state and output column is derived from the state equations. 

 

This table can alternatively be represented as: 
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State Diagram  
The information available in a state table can be represented graphically in a state diagram. In this 

type of diagram, a state is represented by a circle, and the transition between states is indicated by 

directed lines connecting the circles. 

 
 The binary number inside each circle identifies the state of the flip-flops. The directed 

lines are labeled with two binary numbers separated by a slash viz. (input value/output 
value) during the present state. E.g. directed line from state 00 to 01 is labeled 1/0, meaning 
that when the sequential circuit is in the present state 00 and the input is 1, the output is 0. 
After a clock transition, the circuit goes to the next state 01. 

 A directed line connecting a circle with itself indicates that no change of state occurs. 

 There is no difference between a state table and a state diagram except in the manner of 

representation. The state table is easier to derive from a given logic diagram and the state 

diagram follows directly from the state table. The state diagram gives a pictorial view of 

state transitions and is the form suitable for human interpretation of the circuit operation. 

 

State Reduction and assignment  
The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or 

diagram. The design of a sequential circuit starts from a set of specifications and culminates in a logic 

diagram. Any design process must consider the problem of minimizing the cost of the final circuit 

(reduce the number of gates and flip-flops during the design). 

 

State Reduction  
The reduction of the number of flip-flops in a sequential circuit is referred to as the state-reduction 
problem. State-reduction algorithms are concerned with procedures for reducing the number of 
states in a state-table while keeping the external input-output requirements unchanged.  
 
Example  
Consider a sequential circuit with following specification. States marked inside the circles are 

denoted by letter symbols instead of by their binary values. 
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Consider the input sequence 01010110100 starting from the initial state a. Each input of 0 or 1 

produces an output of 0 or 1 and causes the circuit to go to the next state. From the state diagram, 

we obtain the output and state sequence for the given input sequence as follows: 

 
 

Algorithm: "Two states are said to be equivalent if, for each member of the set of inputs, they give 
exactly the same output and send the circuit either to the same state or to an equivalent state. 
When two states are equivalent, one of them can be removed without altering the input-output 
relationships."  

 First, we need the state table (from state diagram above)  

 
 

 Look for two present states that go to the same next state and have the same output for 
both input combinations. States g and e are two such states: they both go to states a and f 
and have outputs of 0 and 1 for x = 0 and x = 1, respectively. Therefore, states g and e are 
equivalent; one can be removed.  
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Final reduced table and state diagram for the reduced table consists of only five states.  

 
Excitation Tables  
A table that lists required inputs for a given change of state (Present to next-state) is called an 

excitation table.  

 
 

6.4 Design procedure 

The design of a clocked sequential circuit starts from a set of specifications (state table) and ends in 
a logic diagram or a list of Boolean functions from which the logic diagram can be obtained.  

 
Procedure:  
The procedure can be summarized by a list of consecutive recommended steps:  
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(1) State the word description of the circuit behavior. It may be a state diagram, a timing diagram, 
or other pertinent information.  

(2) From the given information about the circuit, obtain the state table.  

(3) Apply state-reduction methods if the sequential circuit can be characterized by input-output 
relationships independent of the number of states.  

(4) Assign binary values to each state if the state table obtained in step 2 or 3 contains letter 
symbols.  

(5) Determine the number of flip-flops needed and assign a letter symbol to each.  

(6) Choose the type of flip-flop to be used.  

(7) From the state table, derive the circuit excitation and output tables.  

(8) Using the map or any other simplification method, derive the circuit output functions and the 
flip-flop input functions.  

(9) Draw the logic diagram.  
 

Example: Design Procedure 
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Unit 7:  Registers and Counters 

 

A circuit with only flip-flops is considered a sequential circuit even in the absence of combinational 
gates. Certain MSI circuits that include flip-flops are classified by the operation that they perform 
rather than the name sequential circuit. Two such MSI components are registers and counters.  
Registers  

 A register is a group of binary cells suitable for holding binary information. A group of flip-
flops constitutes a register.  

 An n-bit register has a group of n flip-flops and is capable of storing any binary information 
containing n bits.  

 In addition to the flip-flops, a register may have combinational gates that perform certain 
data-processing tasks.  

 
Various types of registers are available in MSI circuits. The simplest possible register is one that 
consists of only flip-flops without any external gates. Following fig. shows such a register constructed 
with four D-type flip-flops and a common clock-pulse input.  

 The clock pulse input, CP, enables all flip-flops, so that the information presently available at 
the four inputs can be transferred into the 4-bit register.  

 The four outputs can be sampled to obtain the information presently stored in the register.  
 

 
Register with parallel load  
The transfer of new information into a register is referred to as loading the register. If all the bits of 
the register are loaded simultaneously with a single clock pulse, we say that the loading is done in 
parallel. A pulse applied to the CP input of the register of Fig. above will load all four inputs in 
parallel. When CP goes to 1, the input information is loaded into the register. If CP remains at 0, the 
content of the register is not changed. Note that the change of state in the outputs occurs at the 
positive edge of the pulse.  
 
Shift Registers  

 A register capable of shifting its binary information either to the right or to the left is called a 
shift register. The logical configuration of a shift register consists of a chain of flip-flops 
connected in cascade, with the output of one flip-flop connected to the input of the next 
flip-flop. All flip-flops receive a common clock pulse that causes the shift from one stage to 
the next.  

 The Shift Register is used for data storage or data movement and are used in calculators or 
computers to store data such as two binary numbers before they are added together, or to 
convert the data from either a serial to parallel or parallel to serial format. The individual 
data latches that make up a single shift register are all driven by a common clock (Clk) signal 
making them synchronous devices. Shift register IC's are generally provided with a clear or 
reset connection so that they can be "SET" or "RESET" as required.  

Generally, shift registers operate in one of four different modes with the basic movement of 
data through a shift register being:  
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 Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time, with 
the stored data being available in parallel form.  

 Serial-in to Serial-out (SISO) - the data is shifted serially "IN" and "OUT" of the register, one 
bit at a time in either a left or right direction under clock control.  

 Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register simultaneously 
and is shifted out of the register serially one bit at a time under clock control.  

 Parallel-in to parallel-out (PIPO) - the parallel data is loaded simultaneously into the 
register, and transferred together to their respective outputs by the same clock pulse.  
 

The effect of data movement from left to right through a shift register can be presented graphically 

as: 

 
 

Also, the directional movement of the data through a shift register can be either to the left, (left 

shifting) to the right, (right shifting) left-in but right-out, (rotation) or both left and right shifting 

within the same register thereby making it bidirectional. 

 

Serial-in to Parallel-out (SIPO) 

 
Operation  

 Let’s assume that all the flip-flops (FFA to FFD) have just been RESET (CLEAR input) and that 
all the outputs QA to QD are at logic level "0" i.e., no parallel data output.  

 If a logic "1" is connected to the DATA input pin of FFA then on the first clock pulse the 
output of FFA and therefore the resulting QA will be set HIGH to logic "1" with all the other 
outputs still remaining LOW at logic "0".  

 Assume now that the DATA input pin of FFA has returned LOW again to logic "0" giving us 
one data pulse or 0-1-0.  
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 The second clock pulse will change the output of FFA to logic "0" and the output of FFB and 
QB HIGH to logic "1" as its input D has the logic "1" level on it from QA. The logic "1" has 
now moved or been "shifted" one place along the register to the right as it is now at QA. 
When the third clock pulse arrives this logic "1" value moves to the output of FFC (Q ) and so 
on until the arrival of the fifth clock pulse which sets all the outputs QA to QD back again to 
logic level "0" because the input to FFA has remained constant at logic level "0".  

 The effect of each clock pulse is to shift the data contents of each stage one place to the 
right, and this is shown in the following table until the complete data value of 0-0-0-1 is 
stored in the register.  

 

 
 

Serial-in to Serial-out (SISO)  
This shift register is very similar to the SIPO above, except were before the data was read directly in 
a parallel form from the outputs QA to QD, this time the data is allowed to flow straight through the 
register and out of the other end. Since there is only one output, the DATA leaves the shift register 
one bit at a time in a serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO. The 
SISO shift register is one of the simplest of the four configurations as it has only three connections, 
the serial input (SI) which determines what enters the left hand flip-flop, the serial output (SO) which 
is taken from the output of the right hand flip-flop and the sequencing clock signal (Clk). The logic 
circuit diagram below shows a generalized serial-in serial-out shift register. 
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What's the point of a SISO shift register if the output data is exactly the same as the input 
data?  

 Well this type of Shift Register also acts as a temporary storage device or as a time delay 
device for the data, with the amount of time delay being controlled by the number of stages 
in the register, 4, 8, 16 etc or by varying the application of the clock pulses.  

 Commonly available IC's include the 74HC595 8-bit Serial-in/Serial-out Shift Register all with 
3-state outputs. 

 
Parallel-in to Serial-out (PISO)  

The Parallel-in to Serial-out shift register acts in the opposite way to the serial-in to parallel-out one 
above. The data is loaded into the register in a parallel format i.e. all the data bits enter their inputs 
simultaneously, to the parallel input pins PA to PD of the register. The data is then read out 
sequentially in the normal shift-right mode from the register at Q representing the data present at 
PA to PD. This data is outputted one bit at a time on each clock cycle in a serial format. It is 
important to note that with this system a clock pulse is not required to parallel load the register as it 
is already present, but four clock pulses are required to unload the data. 
 

 
Advantage: As this type of shift register converts parallel data, such as an 8-bit data word into serial 
format, it can be used to multiplex many different input lines into a single serial DATA stream which 
can be sent directly to a computer or transmitted over a communications line.  
 
Commonly available IC's include the 74HC166 8-bit Parallel-in/Serial-out Shift Registers. 

 

Parallel-in to Parallel-out (PIPO)  
The final mode of operation is the Parallel-in to Parallel-out Shift Register. This type of register also 

acts as a temporary storage device or as a time delay device similar to the SISO configuration above. 

The data is presented in a parallel format to the parallel input pins PA to PD and then transferred 

together directly to their respective output pins QA to QD by the same clock pulse. Then one clock 

pulse loads and unloads the register. This arrangement for parallel loading and unloading is shown 

below. 
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The PIPO shift register is the simplest of the four configurations as it has only three connections, the 

parallel input (PI) which determines what enters the flip-flop, the parallel output (PO) and the 

sequencing clock signal (Clk). Similar to the Serial-in to Serial-out shift register, this type of register 

also acts as a temporary storage device or as a time delay device, with the amount of time delay 

being varied by the frequency of the clock pulses. Also, in this type of register there are no 

interconnections between the individual flip-flops since no serial shifting of the data is required. 

 

Ripple Counters (Asynchronous Counters)  

 MSI counters come in two categories: ripple counters and synchronous counters.  

 In a ripple counter (Asynchronous Counter); flip-flop output transition serves as a source for 
triggering other flip-flops. In other words, the CP inputs of all flip-flops (except the first) are 
triggered not by the incoming pulses, but rather by the transition that occurs in other flip-
flops.  

 Synchronous counter, the input pulses are applied to all CP inputs of all flip-flops. The 
change of state of a particular flip-flop is dependent on the present state of other flip-flops.  

 
Binary Ripple Counter  
A binary ripple counter consists of a series connection of complementing flip-flops (T or JK type), 

with the output of each flip-flop connected to the CP input of the next higher-order flip-flop. The 

flip-flop holding the least significant bit receives the incoming count pulses. The diagram of a 4-bit 

binary ripple counter is shown in Fig. below. All J and K inputs are equal to 1. 
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All J and K inputs are equal to 1. The small circle in the CP input indicates that the flip-flop 

complements during a negative-going transition or when the output to which it is connected goes 

from 1 to 0. 

 

To understand the operation of the binary counter, refer to its count sequence given in Table.  

 It is obvious that the lowest-order bit A1 must be complemented with each count pulse. 
Every time A1 goes from 1 to 0, it complements A2. Every time A2 goes from 1 to 0, it 
complements A3, and so on.  

 For example: take the transition from count 0111 to 1000. The arrows in the table 
emphasize the transitions in this case. A1 is complemented with the count pulse. Since A1 
goes from 1 to 0, it triggers A2 and complements it. As a result, A2 goes from 1 to 0, which in 
turn complements A3. A3 now goes from 1 to 0, which complements A4. The output 
transition of A4, if connected to a next stage, will not trigger the next flip-flop since it goes 
from 0 to 1. The flip-flops change one at a time in rapid succession, and the signal 
propagates through the counter in a ripple fashion.  
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BCD Ripple Counter (Decade Counter)  
A decimal counter follows a sequence of ten states and returns to 0 after the count of 9. Such a 
counter must have at least four flip-flops to represent each decimal digit, since a decimal digit is 
represented by a binary code with at least four bits. The sequence of states in a decimal counter is 
dictated by the binary code used to represent a decimal digit. 

 

 
Fig: BCD ripple counter 
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BCD Counter above counts from 0 to 9. To count in decimal from 0 to 99, we need a two-decade 
counter. To count from 0 to 999, we need a three-decade counter. 

 
 
Synchronous Counters  
Synchronous counters are distinguished from ripple counters in that clock pulses are applied to the 
CP inputs of all flip-flops. The common pulse triggers all the flip-flops simultaneously, rather than 
one at a time in succession as in a ripple counter. The decision whether a flip-flop is to be 
complemented or not is determined from the values of the J and K inputs at the time of the pulse. If 
J = K = 0, the flip-flop remains unchanged. If J = K = 1, the flip-flop complements. 
 
Binary Counter 
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Binary Up-Down Counter 

 
 
BCD Counter  
A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000. Because of the 
return to 0 after a count of 9, a BCD counter does not have a regular pattern as in a straight binary 
count. To derive the circuit of a BCD synchronous counter, it is necessary to go through a design 
procedure discussed earlier.  
 
The excitation for the T flip-flops is obtained from the present and next state conditions. An output y 
is also shown in the table. This output is equal to 1 when the counter present state is 1001. In this 
way, y can enable the count of the next-higher-order decade while the same pulse switches the 
present decade from 1001 to 0000. The flip-flop input functions from the excitation table can be 
simplified by means of maps. The unused states for minterms 10 to 15 are taken as don't-care terms. 
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Timing Sequences  
The sequences of operations in a digital system are specified by a control unit. The control unit that 
supervises the operations in a digital system would normally consist of timing signals that determine 
the time sequence in which the operations are executed. The timing sequences in the control unit 
can be easily generated by means of counters or shift registers.  
 
Word-Time Generation  
The control unit in a serial computer must generate a word-time signal that stays on for a number of 
pulses equal to the number of bits in the shift registers. The word-time signal can be generated by 
means of a counter that counts the required number of pulses.  
Example: 

 
 

 Assume that the word-time signal to be generated must stay on for a period of eight clock 
pulses.  

 Fig. shows a counter circuit that accomplishes this task.  

 Initially, the 3-bit counter is cleared to 0. A start signal will set flip-flop Q. The output of this 
flip-flop supplies the word-time control and also enables the counter. After the count of 
eight pulses, the flip-flop is reset and Q goes to 0.  
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Timing Signals  
The control unit in a digital system that operates in the parallel mode must generate timing signals 
that stay on for only one clock pulse period. Timing signals that control the sequence of operations 
in a digital system can be generated with a shift register or a counter with a decoder. A ring counter 
is a circular shift register with only one flip-flop being set at any particular time; all others are 
cleared. The single bit is shifted from one flip-flop to the other to produce the sequence of timing 
signals. 

 
 

 Figure (a) shows a 4-bit shift register connected as a ring counter. The initial value of the 
register is 1000, which produces the variable T0. The single bit is shifted right with every 
clock pulse and circulates back from T3 to T0. Each flip-flop is in the 1 state once every four 
clock pulses and produces one of the four timing signals shown in Fig (c). Each output 
becomes a 1 after the negative-edge transition of a clock pulse and remains 1 during the 
next clock pulse.  

 The timing signals can be generated also by continuously enabling a 2-bit counter that goes 
through four distinct states. The decoder shown in Fig. (b) decodes the four states of the 
counter and generates the required sequence of timing signals.  

 
Johnson Counter  

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide outputs for 
2k timing signals. 

 

 A switch-tail ring counter is a circular shift register with the complement output of the last 
flip-flop connected to the input of the first flip-flop.  
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 A k-bit ring counter circulates a single bit among the flip-flops to provide k distinguishable 
states.  

 The number of states can be doubled if the shift register is connected as a switch-tail ring 
counter.  

 
 
The eight AND gates listed in the table, when connected to the circuit will complete the construction 
of the Johnson counter. Since each gate is enabled during one particular state sequence, the outputs 
of the gates generate eight timing sequences in succession.  
 
Operation:  
The decoding of a k-bit switch-tail ring counter to obtain 2k timing sequences follows a regular 
pattern. The all-0’s state is decoded by taking the complement of the two extreme flip-flop outputs. 
The all-1's state is decoded by taking the normal outputs of the two extreme flip-flops. All other 
states are decoded from an adjacent 1, 0 or 0, 1 pattern in the sequence. For example, sequence 7 
has an adjacent 0, 1 pattern in flip-flops B and C. The decoded output is then obtained by taking the 
complement of B and the normal output of C, or B' C.  
Johnson counters can be constructed for any number of timing sequences. The number of flip-
flops needed is one-half the number of timing signals. The number of decoding gates is equal to the 
number of timing signals and only 2-input gates are employed.  
 
Memory unit (Random Access Memory-RAM)  

 A memory unit is a collection of storage cells together with associated circuits needed to 
transfer information in and out of the device. Memory cells can be accessed for information 
transfer to or from any desired random location and hence the name random access 
memory, abbreviated RAM.  

 A memory unit stores binary information in groups of bits called words. A word in memory is 
an entity of bits that move in and out of storage as a unit. A memory word is a group of 1's 
and 0's and may represent a number, an instruction, one or more alphanumeric characters, 
or any other binary-coded information.  

 
 
The communication between a memory and its environment is achieved through:  
o n data input lines : provide information to be stored in memory  

o n data output lines: supply the information coming out of memory.  
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o k address lines: specify particular word chosen among the many available.  

o two control inputs: specify the direction of transfer desired  

 Each word in memory is assigned an identification number, called an address, starting from 
0 and continuing with 1, 2, 3, up to 2k - I, where k is the number of address lines.  

 Computer memories may range from 1024 words, requiring an address of 10 bits, to 232 
words, requiring 32 address bits.  

 
Conventions for Memory storage:  
K (kilo) = 210  
M (mega) = 220  
G (giga) = 230  
Thus, 64K = 216, 2M = 221, and 4G = 232  
 
Example: Memory unit with a capacity of 1K words of 16 bits each. Since 1K = 1024 = 210 and 16 bits 
constitute two bytes, we can say that the memory can accommodate 2048 = 2K bytes. 

 
Write and Read Operations  
The two operations that a random-access memory can perform are the write and read operations. 
The write signal specifies a transfer-in operation and the read signal specifies a transfer-out 
operation. On accepting one of these control signals, the internal circuits inside the memory provide 
the desired function.  
 
Write Operation: transferring a new word to be stored into memory  
1. Transfer the binary address of the desired word to the address lines.  

2. Transfer the data bits that must be stored in memory to the data input lines.  

3. Activate the write input.  
 
Read Operation: transferring a stored word out of memory  
1. Transfer the binary address of the desired word to the address lines.  

2. Activate the read input.  
 
Commercial memory components available in IC chips sometimes provide the two control inputs for 
reading and writing in a somewhat different configuration. The memory operations that result from 
these control inputs are specified in Table below. 
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The memory enable (sometimes called the chip select) is used to enable the particular memory chip 
in a multichip implementation of a large memory. When the memory enable is inactive, memory 
chip is not selected and no operation is performed. When the memory enable input is active, the 
read/write input determines the operation to be performed.  
 
IC memory (Binary Cell- BC)  
The internal construction of a random-access memory of m words with n bits per word consists of m 

x n binary storage cells and associated decoding circuits for selecting individual words. The binary 

storage cell is the basic building block of a memory unit. 

 

 
 

 

 

 

 

 


