
©Er. Anil Shah Page | 1

Chapter 1

Data Representation

Number System

Number of digits used in a number system is called its base or radix. We can

categorize number system as below:

- Binary number system

- Octal Number System

- Decimal Number System

- Hexadecimal Number system

Conversion between number systems (do yourself)

Representation of Decimal numbers

We can normally represent decimal numbers in one of following two ways

- By converting into binary

- By using BCD codes

By converting into binary

Advantage

Arithmetic and logical calculation becomes easy. Negative numbers can be

represented easily.

Disadvantage

At the time of input conversion from decimal to binary is needed and at the

time of output conversion from binary to decimal is needed.

Therefore this approach is useful in the systems where there is much

calculation than input/output.

By using BCD codes

Disadvantage

Arithmetic and logical calculation becomes difficult to do. Representation of

negative numbers is tricky.

Advantage

At the time of input conversion from decimal to binary and at the time of

output conversion from binary to decimal is not needed.

Therefore this approach is useful in the systems where there is much

input/output than arithmetic and logical calculation.

©Er. Anil Shah Page | 2

Complements

(R-1)'s Complement

(R-1)'s complement of a number N is defined as (r
n
 -1) –N

Where N is the given number

 r is the base of number system

 n is the number of digits in the given number

To get the (R-1)'s complement fast, subtract each digit of a number from (R-

1)

 Example

- 9's complement of 83510 is 16410

- 1's complement of 10102 is 01012(bit by bit complement operation)

R's Complement

R's complement of a number N is defined as r
n
 –N

Where N is the given number

 r is the base of number system

 n is the number of digits in the given number

To get the R's complement fast, add 1 to the low-order digit of its (R-1)'s

complement

- 10's complement of 83510 is 16410 + 1 = 16510

- 2's complement of 10102 is 01012 + 1 = 01102

Representation of Negative numbers

There is only one way of representing positive numbers in computer but we

can represent negative numbers in any one of following three ways:

- Signed magnitude representation

- Signed 1’s complement representation

- Signed 2’s complement representation

Signed magnitude representation

Complement only the sign bit

e.g.

+9 ==> 0 001001

-9 ==> 1 001001

Signed 1’s complement representation

Complement all the bits including sign bit

e.g.

+9 ==> 0 001001

-9 ==> 1 110110

©Er. Anil Shah Page | 3

Signed 2’s complement representation

Take the 2's complement of the number, including its sign bit.

e.g.

+9 ==> 0 001001

-9 ==> 1 110111

Overflow Detection

If we add two n bit numbers, result may be a number with n+1 bit which can

not be stored in n-bit register. This situation is called overflow. We can

detect whether there is overflow or not as below:

Case Unsigned numbers

Consider a 4-bit register

Maximum numbers that can be stored N<= 2
n
 -1 = 15

If there is no end carry => No overflow

e.g.

6 0110

9 1001

15 1111

If there is end carry => Overflow.

e.g.

9 1001

9 1001

 (1)0010

 Overflow

Case Signed Numbers:

Consider a 5-bit register

Maximum and Minimum numbers that can be stored -2
n-1

=< N<= +2
n-1

 -1

 -16 =<N<= +15

To detect the overflow we seed to see two carries. Carry into the sign bit

position and carry out of the sign bit position.

If both carries are same => No overflow

6 0 0110

9 0 1001

15 0 1111

Here carry in sign bit position =cn-1= 0

 carry out of sign bit position =cn= 0

©Er. Anil Shah Page | 4

(cn-1  cn) = 0 => No overflow

If both carries are different => overflow

 9 0 1001

+9 0 1001

18 1 0010

Here carry in sign bit position =cn-1= 1

 carry out of sign bit position =cn= 0

(cn-1  cn) = 1 => overflow

Floating Point Representation

Floating points are represented in computers as the format given below:

Mantissa

 Signed fixed point number, either an integer or a fractional number

Exponent

 Designates the position of the decimal point

Decimal Value

 N = m * r
e

Where m is mantissa

 r is base

 e is exponent

Example

Consider the number N= 1324.567

Now

m = 0.1324567

Sign Exponent mantissa

©Er. Anil Shah Page | 5

e = 4

r = 10

therefore

N= m * r
e
 = 0.1324567 * 10

+4

Note:

In Floating Point Number representation, only Mantissa (m) and Exponent (e)

are explicitly represented. The position of the Radix Point is implied.

Another example

Consider the binary number N=1001.11 (6-bit exponent and 10-bit fractional

mantissa)

Now

m= 100111000

e= 0 00100 = +4

r= 2

sign bit = 0

 Normalizing Floating point numbers

A number is said to be normalized if most significant position of the

mantissa contains a non-zero digit.

e.g.

m= 001001110

e= 0 00100 = +6

r= 2

Above number is not normalized

To normalize the above number we need to remove the leading zeros of

mantissa and need to subtract the exponent from the number of zeros that are

removed.

i.e.

m= 1001110

e= 0 00100 = +4

Normalization improves the precision of floating point numbers.

©Er. Anil Shah Page | 6

Other Decimal Codes

Decimal BCD(8421) 2421 84-2-1 Excess-3

0 0000 0000 0000 0011

1 0001 0001 0111 0100

2 0010 0010 0110 0101

3 0011 0011 0101 0110

4 0100 0100 0100 0111

5 0101 1011 1011 1000

6 0110 1100 1010 1001

7 0111 1101 1001 1010

8 1000 1110 1000 1011

9 1001 1111 1111 1100

Let d3 d2 d1 d0: symbol in the codes

BCD: d3 x 8 + d2 x 4 + d1 x 2 + d0 x 1  8421 code.

2421: d3 x 2 + d2 x 4 + d1 x 2 + d0 x 1

Excess-3: BCD + 3

BCD: It is difficult to obtain the 9's complement.

However, it is easily obtained with the other codes listed above → Self-

complementing codes

Gray Codes

Characterized by having their representations of the binary integers differ in

only one digit between consecutive integers

©Er. Anil Shah Page | 7

ASCII Code

The ASCII code is the standard code commonly used for the transmission of

binary information. Each character is represented by a 7-bit code and usually

an eighth bit is inserted for parity. The code consists of 128 characters.

Ninety-five characters represent graphic symbols that include upper- and

lowercase letters, numerals zero to nine, punctuation marks, and special

symbols. Twenty-three characters represent format effectors, which are

functional characters for controlling the layout of printing or display devices

such as carriage return, line feed, horizontal tabulation, and back space. The

other 10 characters are used to direct the data communication flow and

report its status.

Decimal
number

 Gray Binary
 g3 g2 g1 g0 b3 b2 b1 b0

 0 0 0 0 0 0 0 0 0
 1 0 0 0 1 0 0 0 1
 2 0 0 1 1 0 0 1 0
 3 0 0 1 0 0 0 1 1
 4 0 1 1 0 0 1 0 0
 5 0 1 1 1 0 1 0 1
 6 0 1 0 1 0 1 1 0
 7 0 1 0 0 0 1 1 1
 8 1 1 0 0 1 0 0 0
 9 1 1 0 1 1 0 0 1
10 1 1 1 1 1 0 1 0
11 1 1 1 0 1 0 1 1
12 1 0 1 0 1 1 0 0
13 1 0 1 1 1 1 0 1
14 1 0 0 1 1 1 1 0
15 1 0 0 0 1 1 1 1

©Er. Anil Shah Page | 8

ERROR DETECTION CODES

A parity bit(s) is an extra bit that is added with original message to detect

error in the message during data transmission. This is a simplest method for

error detection.

Even Parity

One bit is attached to the information so that the total number of 1 bits is an

even number

©Er. Anil Shah Page | 9

 Message Parity

 1011001 0

 1010010 1

Odd Parity

One bit is attached to the information so that the total number of 1 bits is an

odd number

 Message Parity

 1011001 1

 1010010 0

Parity generator

Message

(xyz)

Parity bit

(odd)

000 1

001 0

010 0

011 1

100 0

101 1

110 1

111 0

Now

P = x  y  z

Parity Checker:

Considers original message as well as parity bit

e = p  x  y  z

e= 1 => No. of 1’s in pxyz is even => Error in data

e= 0 => No. of 1’s in pxyz is odd => Data is error free

Circuit diagram for parity generator and parity checker

©Er. Anil Shah Page | 10

C
l
o
c
k
L
D
R
L
D

I
N
R

C
L
R
L
D
I
R
I
N
P
R
E

A
L
U

A
C
L
D

I
N
R

C
L
R
D
R
L
D

I
N

y

z

x  y

P = x  y  z

p  z

e

©Er. Anil Shah Page | 11

Chapter 2

Register Transfer and Microoperations

Combinational and sequential circuits can be used to create simple digital

systems. These are the low-level building blocks of a digital computer.

The operations on the data in registers are called microoperations. The

functions built into registers are examples of microoperations

– Shift

– Load

– Clear

– Increment

Alternatively we can say that an elementary operation performed during

one clock pulse on the information stored in one or more registers is

called microopeartion. Register transfer language can be used to describe

the (sequence of) microoperations

Register Transfer Language

Registers are designated by capital letters, sometimes followed by

numbers (e.g., A, R13, IR). Often the names indicate function:

– MAR memory address register

– PC program counter

– IR instruction register

A register transfer is indicated as ―R2  R1‖

Control Function

Often actions need to only occur if a certain condition is true. In digital

systems, this is often done via a control signal, called a control function.

e.g.

P: R2  R1

Which means ―if P = 1, then load the contents of register R1 into register

R2‖, i.e., if (P = 1 then (R2  R1))

If two or more operations are to occur simultaneously, they are separated

with commas

e.g.

©Er. Anil Shah Page | 12

P: R3  R5, MAR  IR

Microoperations

Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic microoperations

• The basic arithmetic microoperations are

– Addition

– Subtraction

– Increment

– Decrement

• The additional arithmetic microoperations are

– Add with carry

– Subtract with borrow

– Transfer/Load

– etc. …

 Summary of Typical Arithmetic Micro-Operations

Binary Adder

To perform multibit addition in computer a full adder must be allocated for

each bit so that all bits can be added simultaneously. Thus, to add two 4-bit

numbers to produce a 4-bit sum (with a possible carry), we need four full

adders with carry lines cascaded, as shown in the figure given below. For

two 8-bit numbers, we need eight full adders, which can be formed by

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

©Er. Anil Shah Page | 13

cascading two of these 4-bit blocks. By extension, two binary numbers of

any size may be added in this manner.

Binary Subtractor

The subtraction A – B can be done by taking the 2’s complement of B and

adding it to A because A- B = A + (-B). It means if we use the inverters to

make 1’s complement of B (connecting each Bi to an inverter) and then add

1 to the least significant bit (by setting carry C0 to 1) of binary adder, then

we can make a binary subtractor.

Binary Adder Subtractor

The addition and subtraction can be combined into one circuit with one

common binary adder. The mode M controls the operation. When M=0 the

circuit is an adder when M=1 the circuit is Subtractor. It can be don by using

exclusive-OR for each Bi and M. Note that 1 ⊕ x = x’ and 0 ⊕ x = x

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

©Er. Anil Shah Page | 14

{C = carry bit, V= overflow bit}

 Binary Incrementer

The increment microoperation adds one to a number in a register. For

example, if a 4-bit register has a binary value 0110, it will go to 011 1 after it

is incremented. This can be accomplished by means of half-adders

connected in cascade.

A = A +1

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

©Er. Anil Shah Page | 15

Binary Arithmetic Circuit

©Er. Anil Shah Page | 16

If s0 and s1 both are zero mux selects the input a lebel 0 (i.e. Y= B) Then

adder adds A and Y and cin (i.e. A and B and cin)

 D = A + B if cin=0

 D = A + B+1 if cin=1

If s0 =0 and s1=1 mux selects the input at label 1 (i.e. Y= B’) Then adder

adds A and Y (i.e. A and B’ and cin)

 D = A + B’ if cin=0

 D = A + B’ +1 if cin=1

If s0 =1 and s1=0 mux selects the input at label 2 (i.e. Y= 0000) Then adder

adds A and Y (i.e. A and 0 and cin)

 D = A if cin=0

 D = A +1 if cin=1

If s0 =1 and s1=1mux selects the input at label 3 (i.e. Y= 1111= -1) Then

adder adds A and Y (i.e. A and -1 and cin)

 D = A - 1 if cin=0

 D = A if cin=1

Logic Microoperations

Logic microoperations are bit-wise operations, i.e., they work on the

individual bits of data. Useful for bit manipulations on binary data.

Useful for making logical decisions based on the bit value. There are, in

principle, 16 different logic functions that can be defined over two binary

input variables. However, most systems only implement four of these

– AND (), OR (), XOR (), Complement/NOT

The others can be created from combination of these

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

©Er. Anil Shah Page | 17

Hardware Implementation of Logic microoperations

Applications Of Logic Microoperations

Logic microoperations can be used to manipulate individual bits or a

portions of a word in a register. Consider the data in a register A. In another

register, B, is bit data that will be used to modify the contents of A

– Selective-set A  A + B

– Selective-complement A  A  B

– Selective-clear A  A • B’

– Mask (Delete) A  A • B

– Clear A  A  B

– Insert A  (A • B) + C

– Compare A  A  B

0 0 F = A  B AND

0 1 F = AB OR

1 0 F = A  B XOR
1 1 F = A’ Complement

S1 S0 Output -operation

B

A

S

S

F

1

0

i

i

i
0

1

2

3

4 X 1
 MUX

Select

0
 Function table

©Er. Anil Shah Page | 18

Selective-set

In a selective set operation, the bit pattern in B is used to set certain bits

in A

 1 1 0 0 At

 1 0 1 0 B

 1 1 1 0 At+1 (A  A + B)

If a bit in B is set to 1, that same position in A gets set to 1, otherwise

that bit in A keeps its previous value

Selective-complement

In a selective complement operation, the bit pattern in B is used to

complement certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

If a bit in B is set to 1, that same position in A gets complemented from

its original value, otherwise it is unchanged

Selective-clear

n a selective clear operation, the bit pattern in B is used to clear certain bits

in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 0 0 At+1 (A  A  B’)

If a bit in B is set to 1, that same position in A gets set to 0, otherwise it is

unchanged

Mask Operation

In a mask operation, the bit pattern in B is used to clear certain bits in A

 1 1 0 0 At

 1 0 1 0 B

 1 0 0 0 At+1 (A  A  B)

©Er. Anil Shah Page | 19

If a bit in B is set to 0, that same position in A gets set to 0, otherwise it is

unchanged

Clear Operation

In a clear operation, if the bits in the same position in A and B are the same,

they are cleared in A, otherwise they are set in A

 1 1 0 0 At

 1 0 1 0 B

 0 1 1 0 At+1 (A  A  B)

Insert Operation

An insert operation is used to introduce a specific bit pattern into A register,

leaving the other bit positions unchanged

This is done as

– A mask operation to clear the desired bit positions, followed by

– An OR operation to introduce the new bits into the desired

positions

– Example

» Suppose you wanted to introduce 1010 into the low order

four bits of A: 1101 1000 1011 0001 A (Original)

 1101 1000 1011 1010 A

(Desired)

 1101 1000 1011 0001 A (Original)

 1111 1111 1111 0000 Mask

 1101 1000 1011 0000 A

(Intermediate)

 0000 0000 0000 1010 Added bits

 1101 1000 1011 1010 A (Desired)

Shift Micro-Operations

There are three types of shifts

– Logical shift

– Circular shift

©Er. Anil Shah Page | 20

– Arithmetic shift

Right shift operation

Left shift operation

In a logical shift the serial input to the shift is a 0.

Logical right shift operation:

Logical left shift operation

In a Register Transfer Language, the following notation is used

– shl for a logical shift left

– shr for a logical shift right

– Examples:

» R2  shr R2

» R3  shl R3

0

0

Serial
input

Serial
input

©Er. Anil Shah Page | 21

Circular Shift operation

In a circular shift the serial input is the bit that is shifted out of the other end of the

register.

Right circular shift operation

Left circular shift operation:

In a RTL, the following notation is used

– cil for a circular shift left

– cir for a circular shift right

– Examples:

» R2  cir R2

» R3  cil R3

Arithmetic Shift Operation

An arithmetic shift is meant for signed binary numbers (integer). An arithmetic left shift

multiplies a signed number by two and an arithmetic right shift divides a signed number

by two. The main distinction of an arithmetic shift is that it must keep the sign of the

number the same as it performs the multiplication or division

Right arithmetic shift operation:

Left arithmetic shift operation

0

F
u
n
c
ti
o
n
t
a
b
l

sign
bit

©Er. Anil Shah Page | 22

An left arithmetic shift operation must be checked for the overflow

In a RTL, the following notation is used

– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

Hardware Implementation of Shift Microoperations

©Er. Anil Shah Page | 23

Chapter 3

Basic Computer Organization and Design

Introduction

Every different processor type has its own design (different registers,

buses, microoperations, machine instructions, etc). Modern processor is a

very complex device. It contains

– Many registers

– Multiple arithmetic units, for both integer and floating point

calculations

– The ability to pipeline several consecutive instructions to speed

execution

– Etc.

However, to understand how processors work, we will start with a

simplified processor model. M. Morris Mano introduces a simple

processor model he calls the Basic Computer. The Basic Computer has

two components, a processor and memory

• The memory has 4096 words in it

– 4096 = 2
12

, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

The instructions of a program, along with any needed data are stored in

memory. The CPU reads the next instruction from memory. It is placed

in an Instruction Register (IR). Control circuitry in control unit then

CPU RAM

0

4095

0 15

©Er. Anil Shah Page | 24

translates the instruction into the sequence of microoperations necessary

to implement it

Instruction Format of Basic Computer

A computer instruction is often divided into two parts

– An opcode (Operation Code) that specifies the operation for

that instruction

– An address that specifies the registers and/or locations in

memory to use for that operation

In the Basic Computer, since the memory contains 4096 (= 2
12

) words,

we needs 12 bit to specify the memory address that is used by this

instruction. In the Basic Computer, bit 15 of the instruction specifies the

addressing mode (0: direct addressing, 1: indirect addressing). Since the

memory words, and hence the instructions, are 16 bits long, that leaves 3

bits for the instruction’s opcode

Addressing Modes

The address field of an instruction can represent either

– Direct address: the address operand field is effective address

(the address of the operand), or

– Indirect address: the address in operand field contains the

memory address where effective address resides.

Opcode Address

Instruction Format

1
5

1
4

1
2

0 1
1

Addressing
mode

I

©Er. Anil Shah Page | 25

• Effective Address (EA)

– The address, where actual data resides is called effective

adrress.

Basic Computer Registers

Symbol Size Register Name Description

DR 16 Data Register Holds memory operand

AR 12

Address Register

Holds address for

memory

AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12

Program Counter

Holds address of

instruction

TR 16 Temporary

Register

Holds temporary data

INPR 8 Input Register Holds input character

OUTR 8 Output Register Holds output character

0 ADD 45
7

2
2

Operand 45
7

1 ADD 30
0

3
5

135
0

Clo
ck
LD
R
LD
IN
R
CL
R
LD
IR
IN
PR
E

AL
U

AC
LD
IN
R
CL
R
DR
LD
IN
R
CL
R
PC
LD
IN
R
CL
R
AR
Wri
te
Re
ad
Ad
dre
ss
LD
IN

Clock
LDR
LD INR
CLR
LD
IR
INPR
E

ALU

AC
LD INR
CLR
DR
LD INR
CLR
PC
LD INR
CLR
AR
Write
Read
Address
LD INR
CLR
4096 x
16
Memory
unit

Bus
S0
S1
S2 S1 S0

 R
egister

0 0 0

x

0 0 1

A

Cloc
k
LDR
LD
INR
CLR
LD
IR
INP
R
E

ALU

AC
LD
INR
CLR
DR
LD
INR
CLR
PC
LD
INR
CLR
AR
Writ
e
Rea
d
Addr
ess
LD
INR
CLR
409
6 x
16
Me
mor
y
unit

Cl
oc
k
L
D
R
L
D
IN
R
C
L
R
L
D
IR
IN
P
R
E

A
L
U

A
C
L
D
IN
R
C
L
R
D
R
L
D

Cl
oc
k
LD
R
LD
IN
R
CL
R
LD
IR
IN
PR
E

AL
U

AC
LD
IN
R
CL
R
D
R
LD
IN
R
CL
R
PC
LD
IN

Cl
oc
k
L
D
R
L
D
IN
R
C
L
R
L
D
IR
IN
P
R
E

A
L
U

A
C
L
D
IN
R
C
L
R
D
R
L
D

Cl
oc
k
LD
R
LD
IN
R
CL
R
LD
IR
IN
PR
E

AL
U

AC
LD
IN
R
CL
R
D
R
LD
IN
R
CL
R
PC
LD
IN

Clock
LDR
LD INR CLR
LD
IR
INPR
E

ALU

AC
LD INR CLR
DR
LD INR CLR
PC
LD INR CLR
AR
Write
Read
Address
LD INR CLR
4096 x 16
Memory unit

Bus
S0
S1
S2 S1 S0 Register

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory
Indirect addressing
Direct addressing
AC
+
AC
+
1350
Operand
300

Clock
LDR
LD INR CLR
LD
IR
INPR
E

ALU

AC
LD INR CLR
DR
LD INR CLR
PC
LD INR CLR
AR
Write
Read
Address
LD INR CLR
4096 x 16
Memory unit

Bus
S0
S1
S2 S1 S0 Register

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory
Indirect addressing
Direct addressing
AC
+
AC
+
1350
Operand
300

©Er. Anil Shah Page | 26

Since the memory in the Basic Computer only has 4096 (=2
12

) locations, PC

and AR only needs 12 bits

Since the word size of Basic Computer only has 16 bit, the DR, AC, IR and

TR needs 16 bits.

The Basic Computer uses a very simple model of input/output (I/O)

operations

– Input devices are considered to send 8 bits of character data to

the processor

– The processor can send 8 bits of character data to output

devices

The Input Register (INPR) holds an 8 bit character gotten from an input

device

The Output Register (OUTR) holds an 8 bit character to be send to an output

device

Common Bus System of Basic Computer

The registers in the Basic Computer are connected using a bus. This gives a

savings in circuitry over complete connections between registers.

Three control lines, S2, S1, and S0 control which register the bus selects as

its input

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

S2 S1 S0 Register

©Er. Anil Shah Page | 27

Either one of the registers will have its load signal activated, or the

memory will have its read signal activated

– Will determine where the data from the bus gets loaded

The 12-bit registers, AR and PC, have 0’s loaded onto the bus in the high

order 4 bit positions. When the 8-bit register OUTR is loaded from the

bus, the data comes from the low order 8 bits on the bus

S1
S
0

Bu
s

Memory unit
 4096 x 16

LD INR CLR

Address

Read Write

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

AC ALU

E

INPR

IR

LD

LD INR CLR

TR

OUTR

LD
Clock

16-bit common bus

7

1

2

3

4

5

6

©Er. Anil Shah Page | 28

Instruction Formats of Basic Computer

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

Instruction Set Completeness

An instruction set is said to be complete if it contains sufficient instructions

to perform operations in following categories:

 Arithmetic, logic, and shift instructions

 Instructions to transfer data between the main memory and the

processor registers

 Program control and sequencing instructions

 Instructions to perform Input/Output operations

Instruction set of Basic computer is complete because

ADD, CMA (complement), INC can be used to perform addition and

subtraction and CIR (circular right shift), CIL (circular left shift) instructions

can be used to achieve any kind of shift operations. Addition subtraction and

shifting can be used together to achieve multiplication and division. AND,

CMA and CLA (clear accumulator) can be used to achieve any logical

operations.

1 111 I/O Operation

15 14 12 11 0

0 111 Register Operation

15 14 12 11 0

I Opcode Operand

15 14 12 11 0

©Er. Anil Shah Page | 29

LDA instruction moves data from memory to register and STA instruction

moves data from register to memory.

The branch instructions BUN, BSA and ISZ together with skip instruction

provide the mechanism of program control and sequencing.

INP instruction is used to read data from input device and OUT instruction is

used to send data from processor to output device.

Control Unit

Control unit (CU) of a processor translates from machine instructions to the

control signals for the microoperations that implement them. Control units

are implemented in one of two ways

• Hardwired Control

– CU is made up of sequential and combinational circuits to

generate the control signals

– If logic is changed we need to change the whole circuitry

– Expensive

– Fast

• Microprogrammed Control

– A control memory on the processor contains microprograms

that activate the necessary control signals

– If logic is changed we only need to change the microprogram

– Cheap

– Slow

©Er. Anil Shah Page | 30

Hardwired control unit of Basic Computer

Operation code is decoded by 3 x 8 decoder which is used to identify the

operation. A 4-bit sequence counter is used to generate timing signals from

T0 to T15. This means instruction cycle of basic computer can not take more

than 16 clock cycles.

Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC  0

We can show timing control diagram as below:

15 14 13 12 11 - 0

3 x 8
 decoder

 7 6 5 4 3 2 1 0

I
D 0

15 14 2 1 0
4 x 16
 decoder

4-bit
 sequence

 counter
 (SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

D

T

T

7

15

0

Combinational
Control

logic

Instruction register (IR)

©Er. Anil Shah Page | 31

Instruction Cycle of Basic Computer
In Basic Computer, a machine instruction is executed in the following

cycle:

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has

an indirect address

4. Execute the instruction

After an instruction is executed, the cycle starts again at step 1, for the

next instruction

Fetch and Decode

T0: AR PC (S0S1S2=010, T0=1)

T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)

T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

©Er. Anil Shah Page | 32

S2

S1

S0

Bus

7
Memory

unit

Address

Read

AR

LD

PC

INR

IR

LD Clock

1

2

5

Common bus

T1

T0

©Er. Anil Shah Page | 33

Flowchart for determining the type of instruction

D'7IT3: AR M[AR]

D'7I'T3: Nothing

D7I'T3: Execute a register-reference instr.

D7IT3: Execute an input-output instr.

Register Reference Instructions are identified when

- D7 = 1, I = 0

- Register Ref. Instr. is specified in b0 ~ b11 of IR

- Execution starts with timing signal T3

let

r = D7 IT3 => Register Reference Instruction

Bi = IR(i) , i=0,1,2,...,11

= 0 (direct)

Start

SC 

AR  PC T0

IR  M[AR], PC  PC + 1 T1

AR  IR(0-11), I  IR(15)
Decode Opcode in IR(12-14), T2

D7
= 0 (Memory-reference) (Register or I/O) = 1

I I

Execute
 register-reference

 instruction
 SC  0

Execute
 input-output

 instruction
 SC  0

M[AR] AR Nothing

= 0 (register) (I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
 memory-reference

 instruction
SC  0

T4

©Er. Anil Shah Page | 34

CLA rB11: AC  0, SC  0

CLE rB10: E  0, SC  0

CMA rB9: AC  AC’, SC  0

CME rB8: E  E’, SC  0

CIR rB7: AC  shr AC, AC(15)  E, E  AC(0), SC  0

CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)

INC rB5: AC  AC + 1, SC  0

SPA rB4: if (AC(15) = 0) then (PC  PC+1), SC  0

SNA rB3: if (AC(15) = 1) then (PC  PC+1), SC  0

SZA rB2: if (AC = 0) then (PC  PC+1), SC  0

SZE rB1: if (E = 0) then (PC  PC+1), SC  0

HLT rB0: S  0, SC  0 (S is a start-stop flip-flop)

The effective address of the instruction is in AR and was placed there during

 timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle

- The execution of memory reference instruction starts with T4

AND to AC

D0T4: DR  M[AR] //Read operand

D0T5: AC  AC  DR, SC  0 //AND with AC

ADD to AC

D1T4: DR  M[AR] //Read operand

D1T5: AC  AC + DR, E  Cout, SC  0 //Add to AC and stores carry in E

LDA: Load to AC

D2T4: DR  M[AR] //Read operand

D2T5: AC  DR, SC  0 //Load AC with DR

STA: Store AC

Symbol
Operation
Decoder Symbolic Description

AND D0 AC  AC  M[AR]

ADD D1 AC  AC + M[AR], E  Cout

LDA D2 AC  M[AR]

STA D3 M[AR]  AC

BUN D4 PC  AR

BSA D5 M[AR]  PC, PC  AR + 1

ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

©Er. Anil Shah Page | 35

D3T4: M[AR]  AC, SC  0 // store data into memory location

BUN: Branch Unconditionally

D4T4: PC  AR, SC  0 //Branch to specified address

BSA: Branch and Save Return Address

D5T4: M[AR]  PC, AR  AR + 1 // save return address and increment AR

D5T5: PC  AR, SC  0 // load PC with AR

ISZ: Increment and Skip-if-Zero

D6T4: DR  M[AR] //Load data into DR

D6T5: DR  DR + 1 // Increment the data

D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

// if DR=0 skip next instruction by incrementing PC

Input-Output Configuration and Interrupt

INPR Input register - 8 bits

OUTR Output register - 8 bits

FGI Input flag - 1 bit

FGO Output flag - 1 bit

IEN Interrupt enable - 1 bit

The terminal sends and receives serial information

- The serial info. from the keyboard is shifted into INPR

- The serial info. for the printer is stored in the OUTR

- INPR and OUTR communicate with the terminal serially and with the

AC in parallel.

Input-output
 terminal

Serial
 communication

 interface

Computer
registers and
flip-flops
 Printer

Keyboard

Receiver
 interface

Transmitter
 interface

FGO OUTR

AC

INPR FGI

Serial Communications Path

Parallel Communications Path

©Er. Anil Shah Page | 36

- The flags are needed to synchronize the timing difference between I/O

device and the computer

CPU:

/* Input */ /* Initially FGI = 0 */

 loop: If FGI = 0 goto loop

 AC  INPR, FGI  0

Input Device:

loop: If FGI = 1 goto loop

 INPR  new data, FGI  1

Flowchart of CPU operation

CPU:

/* Output */ /* Initially FGO = 1 */

 loop: If FGO = 0 goto loop

 OUTR  AC, FGO  0

Output Device:

loop: If FGO = 1 goto loop

 consume OUTR, FGO  1

Start Input

FGI  0

FGI=0

AC  INPR

More
Character

END

yes

no

FGI=0

yes

no

©Er. Anil Shah Page | 37

Flowchart of CPU operation (output)

Input Output Instructions

Let

D7IT3 = p

IR(i) = Bi, i = 6, …, 11

INP pB11: AC(0-7)  INPR, FGI  0, SC  0 Input char. to AC

OUT pB10: OUTR  AC(0-7), FGO  0, SC  0 Output char. from AC

SKI pB9: if(FGI = 1) then (PC  PC + 1), SC  0 Skip on input flag

SKO pB8: if(FGO = 1) then (PC  PC + 1), SC  0 Skip on output flag

ION pB7: IEN  1, SC  0 Interrupt enable on

IOF pB6: IEN  0, SC  0 Interrupt enable off

Start Output

FGO  0

FGO=0

More
Character

END

OUTR  AC

AC  Data

yes

no

FGO=1

yes

no

©Er. Anil Shah Page | 38

Interrupt Cycle

The interrupt cycle is a HW implementation of a branch and save return address

operation.

- At the beginning of the instruction cycle, the instruction that is read from

memory is in address 1.

- At memory address 1, the programmer must store a branch instruction

 that sends the control to an interrupt service routine

- The instruction that returns the control to the original program is

"indirect BUN 0"

 After interrupt cycle

0 BUN 1120

0

1

PC = 256
255

1 BUN 0

 Before interrupt

Main
 Program

1120

I/O
 Program

0 BUN 1120

0

PC = 1

 256
255

1 BUN 0

Main
 Program

1120

I/O
 Program

256

R = Interrupt flip-flop

Store return address

R
=
1

=
0

in location 0
 M[0]  PC

Branch to location 1
 PC  1

IEN  0

 R  0

Interrupt cycle Instruction cycle

Fetch and decode
 instructions

IE
N

FG
I

FG
O

Execute
 instructions

R  1

=
1

=
1

=
1

=
0

=
0

=
0

©Er. Anil Shah Page | 39

Complete Description of Basic Computer

Design of Basic Computer

Hardware Components of BC

A memory unit: 4096 x 16.

Registers:

 AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC

Flip-Flops(Status):

 I, S, E, R, IEN, FGI, and FGO

Decoders: a 3x8 Opcode decoder

 a 4x16 timing decoder

Common bus: 16 bits

Control logic gates:

Adder and Logic circuit connected to AC

=1 (I/O) =0 (Register) =1(Indir) =0(Dir)

start

SC  0, IEN  0, R  0

R

AR  PC

R’T0

IR  M[AR], PC  PC + 1

R’T1

AR  IR(0~11), I  IR(15)

D0...D7  Decode IR(12 ~ 14)

R’T2

AR  0, TR 
PC

RT0

M[AR]  TR, PC  0

RT1

PC  PC + 1, IEN  0

R  0, SC  0

RT2

D

7

I I

Execute
I/O

Instruction

Execute
RR

Instruction

AR <- M[AR] Idle

D7IT3 D7I’T3 D7’IT3
D7’I’T3

Execute MR
Instruction

=0(Instruction Cycle) =1(Interrupt Cycle)

=1(Register or I/O) =0(Memory Ref)

©Er. Anil Shah Page | 40

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops

- S2, S1, S0 Controls to select a register for the bus

- AC, and Adder and Logic circuit

Control of AR register

Scan all of the register transfer statements that change the content of AR:

R’T0: AR  PC LD(AR)

R’T2: AR  IR(0-11) LD(AR)

D’7IT3: AR  M[AR] LD(AR)

RT0: AR  0 CLR(AR)

D5T4: AR  AR + 1 INR(AR)

Now,

LD(AR) = R'T0 + R'T2 + D'7IT3

CLR(AR) = RT0

INR(AR) = D5T4

Control of IEN Flip-Flop

pB7: IEN  1 (I/O Instruction)

pB6: IEN  0 (I/O Instruction)

RT2: IEN  0 (Interrupt)

=>

Set (IEN) = pB7

AR

LD

IN
R CLR

Clock

To bus
1
2

From bus
1
2 D'

I

T
T

R

T

D

T

7

3
2

0

4

©Er. Anil Shah Page | 41

Clear(IEN) = pB6 + RT2

p = D7IT3 (Input/Output Instruction)

Control of Common Bus

16-bit common bus is controlled by three selection inputs S2, S1 and S0.

The decimal number associated with each component of the bus determines

the equivalent binary number that must be applied to the selection inputs to

select the registers. This is described by the truth table given below:

To find the logic that makes x1=1 we scan and extract all the statements that

use AR as source.

D4T4: PC  AR

D5T5: PC  AR

=>

x1 = D4T4 + D5T5

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0

Selected
Register
 0 0 0 0 0 0 0 0 0 0 none

1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

D

I

T3

7

J

K

Q IE
N

p

B 7

B 6

T 2

R

©Er. Anil Shah Page | 42

Control of AC Register

All the statements that change the content of AC

D0T5: AC  AC  DR AND with DR

D1T5: AC  AC + DR Add with DR

D2T5: AC  DR Transfer from DR

pB11: AC(0-7)  INPR Transfer from INPR

rB9: AC  AC Complement

rB7 : AC  shr AC, AC(15)  E Shift right

rB6 : AC  shl AC, AC(0)  E Shift left

rB11 : AC  0 Clear

rB5 : AC  AC + 1 Increment

=>

LD(AC) = D0T5 + D1T5 + D2T5 + pB11 + rB9+ rB7 + rB6

CLR(AC) = rB11

INR (AC) = rB5

x1

x2

x3

x4

x5

x6

x7

Encoder

S 2

S 1

S 0

Multiplexer
 bus select
 inputs

©Er. Anil Shah Page | 43

AC

LD

INR

CLR

Clock

To
bus

16 From Adder
 and Logic

16

AND

ADD

DR

INPR

COM

SHR

SHL

INC

CLR

D 0

D 1

D 2

B 11

B 9

B 7

B 6

B 5

B 11

r

p

T 5

T 5

©Er. Anil Shah Page | 44

Chapter 4

Microprogrammed control

Terminologies

Microprogram

 Program stored in memory that generates all the control signals

required to execute the instruction set correctly

 Consists of microinstructions

Microinstruction

 Contains a control word and a sequencing word

 Control Word – contains all the control information required for one

clock cycle

 Sequencing Word - Contains information needed to decide the next

microinstruction address

Control Memory(Control Storage: CS)

 Storage in the microprogrammed control unit to store the

microprogram

Writeable Control Memory(Writeable Control Storage:WCS)

 CS whose contents can be modified:

 -> Microprogram can be changed

 -> Instruction set can be changed or modified

Dynamic Microprogramming

 Computer system whose control unit is implemented with a

microprogram in WCS.

 Microprogram can be changed by a systems programmer or a user

Control Address Register:

 Control address register contains address of microinstruction

Control Data Register:

 Control data register contains microinstruction

Sequencer:

 The device or program that generates address of next microinstruction

to be executed is called sequencer.

Address Sequencing

Process of finding address of next micro-instruction to be executed is called

address sequencing. Address sequencer must have capabilities of finding

address of next micro-instruction in following situations:

 In-line Sequencing

©Er. Anil Shah Page | 45

 Unconditional Branch

 Conditional Branch

 Subroutine call and return

 Looping

 Mapping from instruction op-code to address in control memory.

Fig: Block diagram of address sequencer.

 Control address register receives address of next micro instruction

from different sources.

 Incrementer simply increments the address by one

 In case of branching branch address is specified in one of the field of

microinstruction.

 In case of subroutine call return address is stored in the register SBR

which is used when returning from called subroutine.

Conditional Branch

If Condition is true, set the appropriate field of status register to 1.

Conditions are tested for O(overflow), N(negative), Z(zero), C(carry),

etc.

Then test the value of that field if the value is 1 take branch address

from the next address field of the current microinstruction)

Instruction code

Mapping Logic

Multiplexers

Control memory (ROM)

Subroutine
register
(SBR)

Branch

 logic

Status
bits

Microoperations

Control address register
 (CAR)

Incrementer

MUX
 select

select a status
 bit

Branch address

©Er. Anil Shah Page | 46

Otherwise simple increment the address.

Unconditional Branch

Fix the value of one status bit at the input of the multiplexer to 1. So

that always branching is done

Mapping:

Mapping from the OP-code of an instruction to the address of the

Microinstruction which is the starting microinstruction of its subroutine

in memory

Direct mapping:

Directly use opcode as address of Control memory

Another approach of mapping:

Modify Opcode to use it as an address of control memory

OP-code

Mapping bits

 Microinstruction
 address

 0 x x x x 0 0

 0 1 0 1 1 0 0

 Machine
Instruction

1 0 1 1 Address

ADD Routine
AND Routine

LDA Routine

STA Routine
BUN Routine

Control
Storage

0000
0001
0010
0011
0100

OP-codes of Instructions

 ADD
 AND
 LDA
 STA
 BUN

0000
0001
0010
0011
0100

.

.

.

Address

©Er. Anil Shah Page | 47

Mapping function implemented by ROM or PLA

Use opcode as address of ROM where address of control memory is stored

and than use that address as an address of control memory.

 Microinstruction Format

 F1, F2, F3: Microoperation fields

 CD: Condition for branching

 BR: Branch field

 AD: Address field

Description of CD

CD Condition Symbol Comments
00 Always = 1 U Unconditional branch
01 DR(15) I Indirect address bit
10 AC(15) S Sign bit of AC
11 AC = 0 Z Zero value in AC

OP-code

Mapping memory
 (ROM or PLA)

Control address register

Control Memory

F1 F2 F3 CD BR AD

3 3 3 2 2 7

©Er. Anil Shah Page | 48

Description of BR

Symbolic Microinstruction

Symbols are used in microinstructions as in assembly language. A symbolic

mcroprogram can be translated into its binary equivalent y a microprogram

assembler.

Format of Microinstruction:

Contains five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic address terminated with a

colon

Micro-ops: consists of one, two, or three symbols separated by commas

CD: one of {U, I, S, Z}, where U: Unconditional Branch

 I: Indirect address bit

 S: Sign of AC

 Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty (in case of MAP and RET)}

Symbolic Microprogram (example)

Sequence of microoperations in the fetch cycle:

AR  PC

DR  M[AR], PC  PC + 1

AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Symbolic microprogram for the fetch cycle:

BR Symbol Function

00 JMP CAR  AD if condition = 1

 CAR  CAR + 1 if condition = 0

01 CALL CAR  AD, SBR  CAR + 1 if condition = 1

 CAR  CAR + 1 if condition = 0

10 RET CAR  SBR (Return from subroutine)

11 MAP CAR (2-5)  DR (11-14), CAR (0, 1, 6)  0

©Er. Anil Shah Page | 49

 ORG 64

FETCH: PCTAR U JMP NEXT

 READ, INCPC U JMP NEXT

 DRTAR U MAP

Binary equivalents translated by an assembler

Binary

address F1 F2 F3 CD BR AD

1000000 110 000 000 00 00 1000001

1000001 000 100 101 00 00 1000010

1000010 101 000 000 00 11 0000000

©Er. Anil Shah Page | 50

Microprogram Sequencer

MUX-1 selects an address from one of four sources and routes it into a CAR

 - In-Line Sequencing  CAR + 1

 - Branch, Subroutine Call  Take address from AD field

 - Return from Subroutine  Output of SBR

 - New Machine instruction  MAP

3 2 1 0

S1 MUX
1

External
 (MAP

)

SB
R

Load

Incrementer

CAR

Input
 logic

I0

T

MUX2

Select

1
 I
S
Z

Test

Clock

Control memory

Microops C
D

B
R

A
D

L

I1

S0

.

©Er. Anil Shah Page | 51

MUX-2 Controls the condition and branching as below:

Input Logic

S0 = I0

S1 = I0I1 + I0’T

L = I0’I1T

F Field Decoding

 microoperation fields

3 x 8 decoder

7 6 5 4 3 2 1 0

F
1

3 x 8 decoder

7 6 5 4 3 2 1 0

F
2

3 x 8 decoder

7 6 5 4 3 2 1 0

F
3

Arithmetic
 logic and
 shift unit

AND
ADD

DRTAC

AC
Load

From
 PC

From
 DR(0-10)

Select 0 1

Multiplexers

AR
Load Clock

AC

DR

D
R
T
A
R

P
C
T
A
R

 I0I1T Meaning Source of Address S1S0 L

 000 In-Line CAR+1 00 0
 001 JMP CS(AD) 10 0
 010 In-Line CAR+1 00 0
 011 CALL CS(AD) and SBR <- CAR+1 10 1
 10x RET SBR 01 0
 11x MAP DR(11-14) 11 0

©Er. Anil Shah Page | 52

Since there are three microoperation fields we need 3 decoders. Only some

of the outputs of decoders are shown to be connected to their output. Each of

the output of the decoders must be connected to the proper circuit to initiate

the corresponding microoperation. For example when F1=101 the next clock

pulse transition transfers content of DR(0-10) to AR (Symbolized by

DRTAC). Similarly other operations are also performed.

©Er. Anil Shah Page | 53

Chapter 5

CENTRAL PROCESSING UNIT

Bus System and CPU

A bus organization for 7 CPU registers can be shown as below:

All registers are connected to two multiplexers (MUXA and MUXB) that select the

registers for bus A and bus B. Registers selected by multiplexers are sent to ALU.

Another selector (OPR) connected to ALU selects the operation for the ALU. Output

produced by CPU is stored in some register and the destination register for storing the

result is activated by the destination decoder (SELD).

Example: R1  R2 + R3

– MUX A selector (SELA): BUS A  R2

– MUX B selector (SELB): BUS B  R3

– ALU operation selector (OPR): ALU to ADD

MUX A SELA { MUX B } SELB

ALU OPR

R1

R2

R3

R4

R5

R6

R7

Input

3 x 8
 decoder

SELD

Load
 (7 lines)

Output

A bus B bus

Clock

©Er. Anil Shah Page | 54

– Decoder destination selector (SELD): R1  Out Bus

Control word

Combination of all selection bits of a unit is called control word. Control Word for above

CPU is as below

Examples of Microoperations for CPU

Register Stack

It is the collection of finite number of registers. Stack pointer (SP) points to the register

that is currently at the top of stack.

A

B

C

0

1

2

3

4

6
3

Address

FULL EMPT
Y

SP

D
R

Flags

 Stack pointer

stack

6 bits

R1  R2  R3 R2 R3 R1 SUB 010 011 001 00101

R4  R4  R5 R4 R5 R4 OR 100 101 100 01010

R6  R6 + 1 R6 - R6 INCA 110 000 110 00001

R7  R1 R1 - R7 TSFA 001 000 111 00000

Output  R2 R2 - None TSFA 010 000 000 00000

Output  Input Input - None TSFA 000 000 000 00000

R4  shl R4 R4 - R4 SHLA 100 000 100 11000

R5  0 R5 R5 R5 XOR 101 101 101 01100

 Symbolic Designation
Microoperation SELA SELB SELD OPR Control Word

SELA SELB SELD OP
R

3 3 3 5

©Er. Anil Shah Page | 55

/* Initially, SP = 0, EMPTY = 1(true), FULL = 0(false) */

Push Pop

SP  SP + 1 DR  M[SP]

M[SP]  DR SP  SP  1

If (SP = 0) then (FULL  1) If (SP = 0) then (EMPTY  1)

EMPTY  0 FULL  0

Memory Stack

A portion of memory is used as a stack with a processor register as a stack pointer

PUSH:

SP  SP - 1

M[SP]  DR

POP:

DR  M[SP]

SP  SP + 1

400
1

400
0

399
9

399
8

399
7

300
0

Data
 (operands)

Program
 (instructions)

100
0

P
C

AR

S
P stack

Stack grows
In this direction

©Er. Anil Shah Page | 56

PROCESSOR ORGANIZATION

 In general, most processors are organized in one of 3 ways

– Single register (Accumulator) organization

» Basic Computer is a good example

» Accumulator is the only general purpose register

» Uses implied accumulator register for all operations

 E.g.

 ADD X // AC  AC + M[X]

 LDA Y // AC  M[Y]

– General register organization

» Used by most modern computer processors

» Any of the registers can be used as the source or destination for

computer operations

 e.g.

 ADD R1, R2, R3 // R1  R2 + R3

 ADD R1, R2 // R1  R1 + R2

 MOV R1, R2 // R1  R2

 ADD R1, X // R1  R1 + M[X]

– Stack organization

» All operations are done with the stack

» For example, an OR instruction will pop the two top elements from

the stack, do a logical OR on them, and push the result on the stack

 e.g.

 PUSH X // TOS  M[X]

 ADD // TOS=TOP(S) + TOP(S)

Types of instruction:

The number of address fields in the instruction format depends on the internal

organization of CPU. On the basis of no. of address field we can categorize the

instruction as below:

• Three-Address Instructions

 Program to evaluate X = (A + B) * (C + D) :

 ADD R1, A, B // R1  M [A] + M [B]

 ADD R2, C, D // R2  M[C] + M [D]

 MUL X, R1, R2 // M[X]  R1 * R2

©Er. Anil Shah Page | 57

 Results in short programs

 Instruction becomes long (many bits)

• Two-Address Instructions

 Program to evaluate X = (A + B) * (C + D) :

 MOV R1, A // R1  M [A]

 ADD R1, B // R1  R1 + M [A]

 MOV R2, C // R2  M[C]

 ADD R2, D // R2  R2 + M [D]

 MUL R1, R2 // R1  R1 * R2

 MOV X, R1 // M[X]  R1

 Tries to minimize the size of instruction

 Size of program is relative larger.

• One-Address Instructions

 Use an implied AC register for all data manipulation

 Program to evaluate X = (A + B) * (C + D):

 LOAD A // AC  M [A]

 ADD B // AC  AC + M [B]

 STORE T // M [T]  AC

 LOAD C // AC  M[C]

 ADD D // AC  AC + M [D]

 MUL T // AC  AC * M [T]

 STORE X // M[X]  AC

 Memory access is only limited to load and store

 Large program size

• Zero-Address Instructions

 Can be found in a stack-organized computer

 Program to evaluate X = (A + B) * (C + D):

 PUSH A // TOS  A

 PUSH B // TOS  B

 ADD // TOS  (A + B)

 PUSH C // TOS  C

 PUSH D // TOS  D

 ADD // TOS  (C + D)

 MUL // TOS  (C + D) * (A + B)

 POP X // M[X]  TOS

©Er. Anil Shah Page | 58

On the basis of type of operation performed by instruction we can categorize

instructions as below:

 Data transfer instructions

Used for transferring data from memory to register, register to memory,

register to register, memory to memory, input device to register and from

register to output device.

Load LD  Transfers data from memory to CPU

Store ST  Transfers data from CPU to memory

Move MOV  Transfers data from memory to memory

Input IN  transfers data from input device to register

 Data manipulation instructions

Used for performing any type of calculations on data.

Data manipulation instructions can be further divided into three types:

 Arithmetic instructions

Examples

Operation Symbol

Increment INC

Decrement DEC

Add ADD

Subtract SUB

 Logical and bit manipulation instructions

Some examples:

Operation Symbol

Complement COM

AND AND

OR OR

Exclusive-OR XOR

 Shift instructions

Some examples:

Operation symbol

Logical shift left SHL

Arithmetic shift right SHRA

Arithmetic shift left SHLA

Rotate right ROR

Rotate left ROL

©Er. Anil Shah Page | 59

 Program Control Instructions

 Used for controlling the execution flow of programs

 Some examples:

 Branch BR

 Jump JMP

 Skip SKP

 Call CALL

 Return RTN

Addressing Modes
Specifies a rule for interpreting or modifying the address field of the instruction

before the operand is actually referenced.

We use variety of addressing modes:

 To give programming flexibility to the user

 To use the bits in the address field of the instruction efficiently

Types of addressing modes:

• Implied Mode

 Address of the operands are specified implicitly in the definition of the

instruction

 - No need to specify address in the instruction

 - Examples from Basic Computer CLA, CME, INP

 ADD X;

 PUSH Y;

• Immediate Mode

Instead of specifying the address of the operand, operand itself is specified in the

instruction.

 - No need to specify address in the instruction

 - However, operand itself needs to be specified

 - Sometimes, require more bits than the address

 - Fast to acquire an operand

• Register Mode

 Address specified in the instruction is the address of a register

 - Designated operand need to be in a register

 - Shorter address than the memory address

 - Saving address field in the instruction

PC

+1
In-Line Sequencing (Next instruction is fetched from
the next adjacent location in the memory)

Address from other source: Current Instruction, Stack,
etc; Branch, Conditional Branch, Subroutine, etc

©Er. Anil Shah Page | 60

 - Faster to acquire an operand than the memory addressing

• Register Indirect Mode

 Instruction specifies a register which contains the memory address of the operand

– Saving instruction bits since register address is shorter than the memory

address

– Slower to acquire an operand than both the register addressing or memory

addressing

– EA= content of R.

• Autoincrement or Autodecrement Mode

– When the address in the register is used to access memory, the value in the

register is incremented or decremented by 1 automatically. i.e in case of

register indirect mode.

• Direct Address Mode

 Instruction specifies the memory address which can be used directly to access the

 Memory

– Faster than the other memory addressing modes

– Too many bits are needed to specify the address for a large physical

memory Space

– EA= IR(address)

• Indirect Addressing Mode

– The address field of an instruction specifies the address of a memory

location that contains the address of the operand

– When the abbreviated address is used large physical memory can be

addressed with a relatively small number of bits

– Slow to acquire an operand because of an additional memory access

– EA= M[IR (address)]

• Relative Addressing Modes

 The Address fields of an instruction specifies the part of the address which can be

used along with a designated register to calculate the address of the operand

 - Address field of the instruction is short

 - Large physical memory can be accessed with a small number of address bits

 3 different Relative Addressing Modes:

 * PC Relative Addressing Mode

 - EA = PC + IR(address)

 * Indexed Addressing Mode

 - EA = IX + IR(address) { IX is index register }

 * Base Register Addressing Mode

 - EA = BAR + IR(address)

©Er. Anil Shah Page | 61

Addressing modes (Example)

 200

 201

 202

 399

 400

 500

 600

 702

 800

Direct address 500 // AC  M[500]

Value = 800

Immediate operand // AC  500

Value = 500

Indirect address 500 // AC  M[M[500]]

Value = 300

Relative address 500 // AC  M[PC+500]

Value = 325

Indexed address 500 // AC  (IX+500)

Value = 900

Register 500 // AC  R1

400

Register indirect 500 // AC  M[R1]

Value = 700

Autoincrement 500 // AC  (R1)

Value = 700

Autodecrement 399 /* AC  -(R) */

LOAD TO AC mode

Address = 500

Next Instruction

450

700

800

900

325

300

PC =200

R=400

IX =100

AC

©Er. Anil Shah Page | 62

RISC and CISC

Complex Instruction Set Computer (CISC):

Computers with many instructions and addressing modes came to be known as Complex

Instruction Set Computers (CISC).One goal for CISC machines was to have a machine

language instruction to match each high-level language statement type so that job of

compiler writer becomes easy. Characteristics of CISC computers are:

– The large number of instructions and addressing modes led CISC machines to

have variable length instruction formats

– Multiple operand instructions could specify different addressing modes for each

operand

– Variable length instructions greatly complicate the fetch and decode problem for a

processor

– They have instructions that act directly on memory addresses due to which

multiple memory cycle are needed for executing instructions.

– Microprogrammed control is used rather than hardwired

Reduced Instruction Set Computer (RISC)

Reduced Instruction Set Computers (RISC) were proposed as an alternative The

underlying idea behind RISC processors is to simplify the instruction set and reduce

instruction execution time. Characteristics of RISC are:

– Few instructions

– Few addressing modes

– Only load and store instructions access memory

– All other operations are done using on-processor registers

– Fixed length instructions

– Single cycle execution of instructions

– The control unit is hardwired, not microprogrammed

Register Overlapped Windows:
The procedure (function) call/return is the most time-consuming operations in typical

HLL programs. The depth of procedure activation is within a relatively narrow range.

If we use multiple small sets of registers (windows), each assigned to a different

procedure, a procedure call automatically switches the CPU to use a different window

of registers, rather than saving registers in memory. Windows for adjacent procedures

are overlapped to allow parameter passing.

©Er. Anil Shah Page | 63

There are three classes of registers:

– Global Registers

» Available to all functions

– Window local registers

» Variables local to the function

– Window shared registers

» Permit data to be shared without actually needing to copy it

Only one register window is active at a time. The active register window is indicated by a

pointer. When a function is called, a new register window is activated. This is done by

incrementing the pointer. When a function calls a new function, the high numbered

registers of the calling function window are shared with the called function as the low

numbered registers in its register window. This way the caller’s high and the called

function’s low registers overlap and can be used to pass parameters and results

R31

R26

R15

R10

R25

R16

Common
to D and A

Local to D

Common to C and D

Local to C

Common to B and C

Local to B

Common to A and B

Local to A

Common to A and D

Proc D

Proc C

Proc B

Proc A R9

R0

Common to all
 procedures

Global

R31

R26

R41

R32

R47

R42

R47

R42

R57

R48

R63

R58

R63

R58

R73

R64

R15

R10

©Er. Anil Shah Page | 64

The advantage of overlapped register windows is that the processor does not have to push

registers on a stack to save values and to pass parameters when there is a function call.

This saves

– Accesses to memory to access the stack.

– The cost of copying the register contents at all

And, since function calls and returns are so common, this results in a significant savings

relative to a stack-based approach

©Er. Anil Shah Page | 65

Chapter 6

Computer Arithmetic

Addition and Subtraction

Introduction

 There are three ways of representing negative fixed-point

binary numbers: signed-magnitude, signed-i's complement, or signed-2's

complement. Most computers use the signed-2's complement representation

when performing arithmetic operations with integers. For floating-point

operations, most computers use the signed-magnitude representation for the

mantissa. In this section we develop the addition and subtraction algorithms

for data represented in signed-magnitude and again for data represented in

signed-2's complement. It is important to realize that the adopted

representation for negative numbers refers to the representation of numbers

in the registers before and after the execution of the arithmetic operation. It

does not mean that complement arithmetic may not be used in an

intermediate step. For example, it is convenient to employ complement

arithmetic when performing a subtraction operation with numbers in signed-

magnitude representation. As long as the initial minuend and subtrahend, as

well as the final difference, are in signed-magnitude form the fact that

complements have been used in an intermediate step does not alter the fact

that the representation is in signed-magnitude.

©Er. Anil Shah Page | 66

Addition and Subtraction with Signed Magnitude Data

AVF: Addition overflow Flip-flop

= 0 = 0 = 1 = 1

As = Bs

As = Bs As  Bs

As  Bs

E

A A
A

A A + 1

As  As

= 0 = 1

A<B
A  B

As 0

Minuend in A

Subtrahend in B

END

Result in A and As

AVF  E

= 0

0

Subtract Operation

EA A + B + 1

Minuend in A

Subtrahend in B

Augends in A

Addend in B

 As  Bs As  Bs

EA A + B + 1

 Add Operation

©Er. Anil Shah Page | 67

Perform 45 + (-23)

Operation is add

45 = 00101101

-23 = 10010111

As = 0 A=0101101

Bs = 1 B=0010111

As  Bs =1

EA=A + B’ + 1 = 0101101 + 1101000 +1 = 10010110

AVF=0

=> E=1 A= 0010110

Result is AsA= 0 0010110

Exercise

Perform

(-65) + (50), (-30) + (-12), (20) + (34), (40) – (60), (-20) – (50)

©Er. Anil Shah Page | 68

Hardware Implementation

Fig. Hardware for signed magnitude addition and subtraction

To implement the two arithmetic operations with hardware, it is first

necessary that the two numbers be stored in registers. Let A and B be two

registers that hold the magnitudes of the numbers, and A5 and B5 be two flip-

flops that hold the corresponding signs. The result of the operation may be

transferred to a third register: however, a saving is achieved if the result is

transferred into A and A5. Thus A and A5 together form an accumulator

register.

 Consider now the hardware implementation of the algorithms above. First, a

parallel-adder is needed to perform the microoperation A + B. Second, a

comparator circuit is needed to establish if A > B, A = B, or A < B. Third,

two parallel-subtractor circuits are needed to perform the microoperations A

- B and B - A. The sign relationship can be determined from an exclusive-

OR gate with A5 and B5 as inputs.

This procedure requires a magnitude comparator, an adder, and two

subtractors. However, a different procedure can be found that requires less

equipment. First, we know that subtraction can be accomplished by means of

complement and add. Second, the result of a comparison can be determined

from the end carry after the subtraction. Careful investigation of the

©Er. Anil Shah Page | 69

alternatives reveals that the use of 2's complement for subtraction and

comparison is an efficient procedure that requires only an adder and a

complementer.

Figure above shows a block diagram of the hardware for implementing the

addition and subtraction operations. It consists of registers A and B and sign

flip-flops A5 and B5. Subtraction is done by adding A to the 2's complement

of B. The output carry is transferred to flip-flop E, where it can be checked

to determine the relative magnitudes of the two numbers. The add-overflow

flip-flop AVF holds the overflow bit when A and B are added. The A register

provides other microoperations that may be needed when we specify the

sequence of steps in the algorithm.

The addition of A plus B is done through the parallel adder. The S (sum)

output of the adder is applied to the input of the A register. The

complementer provides an output of B or the complement of B depending on

the state of the mode control M. The complementer consists of exclusive-OR

gates and the parallel adder consists of full-adder circuits as shown in Fig. 4-

7 in Chap. 4. The M signal is also applied to the input carry of the adder.

When M = 0, the output of B is transferred to the adder, the input carry is 0,

and the output of the adder is equal to the sum A+B. When M = 1, the l's

complement of B is applied to the adder, the input carry is 1, and output S =

A + B + 1. This is equal to A plus the 2's complement of B, which is

equivalent to the subtraction A - B.

Hardware Algorithm

The flowchart for the hardware algorithm is presented in Fig. 10-2. The two

signs A, and B, are compared by an exclusive-OR gate. If the output of the

gate is 0, the signs are identical; if it is 1, the signs are different. For an add

operation, identical signs dictate that the magnitudes be added. For a subtract

operation, different signs dictate that the magnitudes be added. The

magnitudes are added with a microoperation EA A + B, where EA is a

register that com-bines E and A. The carry in E after the addition constitutes

an overflow if it is equal to 1. The value of E is transferred into the add-

overflow flip-flop AVF. The two magnitudes are subtracted if the signs are

different for an add operation or identical for a subtract operation. The

magnitudes are subtracted by adding A to the 2's complement of B . No

overflow can occur if the numbers are subtracted so AVF is cleared to 0. A 1

©Er. Anil Shah Page | 70

in E indicates that A > B and the number in A is the correct result. If this

number is zero, the sign A must be made positive to avoid a negative zero. A

0 in E indicates that A < B. For this case it is necessary to take the 2's

complement of the value in A. This operation can be done with one

microoperation A (—A + 1. However, we assume that the A register has

circuits for microoperations complement and increment, so the 2's

complement is obtained from these two microoperations. In other paths of

the flowchart, the sign of the result is the same as the sign of A, so no

change in A, is required. However, when A < B, the sign of the result is the

comple-ment of the original sign of A . It is then necessary to complement A,

to obtain the correct sign. The final result is found in register A and its sign

in As. The value in AVF provides an overflow indication. The final value of

E is immaterial.

©Er. Anil Shah Page | 71

Fig. Flowchart for add and subtract operations

©Er. Anil Shah Page | 72

Addition and Subtraction with Signed 2’s Complement Data

Example:

 33 + (-35)

AC = 33 = 00100001

BR = -35 = 2’s complement of 35

 = 11011101

AC + BR = 11111110 = -2 which is the result

AC  AC + BR + 1

V  overflow

AC  AC + BR

V  overflow

END END

Minuend in AC

Subtrahend in BR

Augends in AC

Addend in BR

Subtract Operation Add Operation

©Er. Anil Shah Page | 73

Multiplication

Multiplication of two fixed-point binary numbers in signed-magnitude

representation is done with paper and pencil by a process of successive shift

and adds operations. This process is best illustrated with a numerical

example.

The process consists of looking at successive bits of the multiplier, least

significant bit first. If the multiplier bit is a 1, the multiplicand is copied

down; otherwise, zeros are copied down. The numbers copied down in

successive lines are shifted one position to the left from the previous number.

Finally, the numbers are added and their sum forms the product.

Hardware Implementation for signed magnitude data

When multiplication is implemented in a digital computer, it is convenient to

change the process slightly. First, instead of providing registers to store and

add simultaneously as many binary numbers as there are bits in the

multiplier, it is convenient to provide an adder for the summation of only

two binary numbers and successively accumulate the partial products in a

register. Second, instead of shifting the multiplicand to the left, the partial

product is shifted to the right, which results in leaving the partial product

and the multiplicand in the required relative positions. Third, when the

corresponding bit of the multiplier is 0, there is no need to add all zeros to

the partial product since it will not alter its value.

©Er. Anil Shah Page | 74

The hardware for multiplication consists of the equipment shown in Fig. 10-

1 plus two more registers. These registers together with registers A and B

are shown in Fig. 10-5. The multiplier is stored in the Q register and its sign

in Qs. The sequence counter SC is initially set to a number equal to the

number of bits in the multiplier. The counter is decremented by 1 after

forming each partial product. When the content of the counter reaches zero,

the product is formed and the process stops.

 Initially, the multiplicand is in register B and the multiplier in Q. The sum

of A and B forms a partial product which is transferred to the EA register.

Both partial product and multiplier are shifted to the right. This shift will be

denoted by the statement shr EAQ to designate the right shift depicted in Fig.

10-5. The least significant bit of A is shifted into the most significant

position of Q, the bit from E is shifted into the most significant position of A,

and 0 is shifted into E. After the shift, one bit of the partial product is shifted

into Q, pushing the multiplier bits one position to the right. In this manner,

the rightmost flip-flop in register Q, designated by Qn, will hold the bit of

the multiplier, which must be inspected next.

Fig. Hardware for Multiply Operation

©Er. Anil Shah Page | 75

Hardware Algorithm

Figure below is a flowchart of the hardware multiply algorithm. Initially, the

multiplicand is in B and the multiplier in Q. Their corresponding signs are in

Bs and Qs, respectively. The signs are compared, and both A and Q are set to

correspond to the sign of the product since a double-length product will be

stored in registers A and Q. Registers A and E are cleared and the sequence

counter SC is set to a number equal to the number of bits of the multiplier.

We are assuming here that operands are transferred to registers from a

memory unit that has words of n bits. Since an operand must be stored with

its sign, one bit of the word will be occupied by the sign and the magnitude

will consist of n - 1 bits.

©Er. Anil Shah Page | 76

Fig. Flowchart for multiply operation

©Er. Anil Shah Page | 77

After the initialization, the low-order bit of the multiplier in Qin is tested. If

it is a 1, the multiplicand in B is added to the present partial product in A. If

it is a 0, nothing is done. Register EAQ is then shifted once to the right to

form the new partial product. The sequence counter is decremented by 1 and

its new value checked. If it is not equal to zero, the process is repeated and a

new partial product is formed. The process stops when SC = 0. Note that the

partial product formed in A is shifted into Q one bit at a time and eventually

replaces the multiplier. The final product is available in both A and Q, with

A holding the most significant bits and Q holding the least significant bits.

The previous numerical example is repeated in Table 10-2 to clarify the

hardware multiplication process. The procedure follows the steps outlined in

the flowchart.

Booth Multiplication Algorithm

Booth multiplication algorithm is used to multiply the numbers represented

in signed 2’s complement form.

Fig. Hardware for Booth Algorithm

©Er. Anil Shah Page | 78

Multiplicand in BR

Multiplier in QR

AC = 0

Qn +1 = 0

 Sc = n

Qn Qn+1

AC = AC + BR AC = AC + BR + 1

Shr AC & QR

SC = SC -1

= 01 = 10

= 00

= 11

 SC

END

= 0
 0

Multiply operation

©Er. Anil Shah Page | 79

BR = 10111

BR + 1 = 01001

Qn Qn+1 AC QR Qn+1 SC

1 0 00000 10011 0 5

Step 1

Subtract BR 01001 10011

AShr 00100 11001 1 4

Step 2

 1 1 00100 11001 1 4

AShr 1 1 00010 01100 1 3

Step 3 0 1 00010 01100 1 3

Add BR 0 1 +10111

 11001 01100 1 3

Shr 11100 10110 1 2

Step 4

 0 0 11100 10110 0 2

AShr 0 0 11110 01011 0 1

Step 5

 1 0 11110 01011 0 1

Subtract BR 01001

 00111 01011 0 1

AShr 00011 10101 0 0

Terminate: Result in AC & QR = 117

Array Multiplier
Checking the bits of the multiplier one at a time and forming partial products

is a sequential operation that requires a sequence of add and shift

microoperations. The multiplication of two binary numbers can be done with

one micro-operation by means of a combinational circuit that forms the

product bits all at once.

Example of Multiplication with Booth Algorithm

©Er. Anil Shah Page | 80

This is a fast way of multiplying two numbers since all it takes is the time

for the signals to propagate through the gates that form the multiplication

array. However, an array multiplier requires a large number of gates, and for

this reason it was not economical until the development of integrated circuits.

To see how an array multiplier can be implemented with a combinational

circuit, consider the multiplication of two 2-bit numbers as shown in Fig. 10-

9. The multiplicand bits are b1 and bo, the multiplier bits are al and ao, and

the product is c3 c2 c1 co. The first partial product is formed by multiplying

ao by bi bo. The multiplication of two bits such as ao and bo produces a 1 if

both bits are 1; otherwise, it produces a 0. This is identical to an AND

operation and can be implemented with an AND gate. As shown in the

diagram, the first partial product is formed by means of two AND gates. The

second partial product is formed by multiplying a1 by b, bo and is shifted

one position to the left. The two partial products are added with two half-

adder (HA) circuits. Usually, there are more bits in the partial products and it

will be necessary to use full-adders to produce the sum. Note that the least

significant bit of the product does not have to go through an adder since it is

formed by the output of the first AND gate.

 A combinational circuit binary multiplier with more bits can be constructed

in a similar fashion. A bit of the multiplier is ANDed with each bit of the

multiplicand in as many levels as there are bits in the multiplier. The binary

©Er. Anil Shah Page | 81

output in each level of AND gatesis added in parallel with the partial product

of the previous level to form a new partial product. The last level produces

the product. For j multiplier bits and k multiplicand bits we need j x k AND

gates and (j — 1) k-bit adders to produce a product of j + k bits. As a second

example, consider a multiplier circuit that multiplies a binary number of four

bits with a number of three bits. Let the multiplicand be represented by b3 b2

bi bo and the multiplier by a2 al a0. Since k = 4 and j = 3, we need 12 AND

gates and two 4-bit adders to produce a product of seven bits. The logic

diagram of the multiplier is shown in Figure above.

©Er. Anil Shah Page | 82

The logic diagram of the multiplier is shown in Figure above.

©Er. Anil Shah Page | 83

Division

Division of two fixed-point binary numbers in signed-magnitude

representation is done with paper and pencil by a process of successive

compare, shift, and subtract operations. Binary division is simpler than

decimal division because the quotient digits are either 0 or 1 and there is no

need to estimate how many times the dividend or partial remainder fits into

the divisor. The division process is illustrated by a numerical example in Fig.

1041. The divisor B consists of five bits and the dividend A, of ten bits. The

five most significant bits of the dividend are compared with the divisor.

Since the 5-bit number is smaller than B, we try again by taking the six most

significant bits of A and compare this number with B. The 6-bit number is

greater than B, so we place a 1 for the quotient bit in the sixth position above

the dividend. The divisor is then shifted once to the right and subtracted

from the dividend. The difference is called a partial remainder because the

division could have stopped here to obtain a quotient of 1 and a remainder

equal to the partial remainder. The process is continued by comparing a

partial remainder with the divisor. If the partial remainder is greater than or

equal to the divisor, the quotient bit is equal to 1. The divisor is then shifted

right and subtracted from the partial remainder. If the partial remainder is

smaller than the divisor, the quotient bit is 0 and no subtraction is needed.

The divisor is shifted once to the right in any case. Note that the result gives

both a quotient and a remainder.

Hardware Implementation for Signed-Magnitude Data

When the division is implemented in a digital computer, it is convenient to

change the process slightly. Instead of shifting the divisor to the right, the

dividend, or partial remainder, is shifted to the left, thus leaving the two

numbers in the required relative position. Subtraction may be achieved by

adding A to the 2's complement of B. The information about the relative

magnitudes is then available from the end-carry. The hardware for

implementing the division operation is identical to that required for

multiplication. Register EAQ is now shifted to the left with 0 inserted into

Qn and the previous value of E lost. The numerical example is repeated in

Fig. 10-12 to clarify the proposed division process.

©Er. Anil Shah Page | 84

©Er. Anil Shah Page | 85

The divisor is stored in the B register and the double-length dividend is

stored in registers A and Q. The dividend is shifted to the left and the divisor

is subtracted by adding its 2's complement value. The information about the

relative magnitude is available in E. If E = 1, it signifies that A B. A quotient

bit 1 is inserted into Q, and the partial remainder is shifted to the left to

repeat the process. If E = 0, it signifies that A < B so the quotient in Q.

remains a 0 (inserted during the shift). The value of B is then added to

restore the partial remainder in A to its previous value. The partial remainder

is shifted to the left and the process is repeated again until all five quotient

bits are formed. Note that while the partial remainder is shifted left, the

quotient bits are shifted also and after five shifts, the quotient is in Q and the

final remainder is in A. Before showing the algorithm in flowchart form, we

have to consider the sign of the result and a possible overflow condition. The

sign of the quotient is determined from the signs of the dividend and the

divisor. If the two signs are alike, the sign of the quotient is plus. If they are

unlike, the sign is minus. The sign of the remainder is the same as the sign of

the dividend.

Overflow

The division operation may result in a quotient with an overflow. This is not

a problem when working with paper and pencil but is critical when the

operation is implemented with hardware. This is because the length of

registers is finite and will not hold a number that exceeds the standard length.

To see this, consider a system that has 5-bit registers. We use one register to

hold the divisor and two registers to hold the dividend. From the example of

Fig. 10-11 we note that the quotient will consist of six bits if the five most

significant bits of the dividend constitute a number greater than the divisor.

The quotient is to be stored in a standard 5-bit register, so the overflow bit

will require one more flip-flop for storing the sixth bit. This divide-overflow

condition must be avoided in normal computer operations because the entire

quotient will be too long for transfer into a memory unit that has words of

standard length, that is, the same as the length of registers. Provisions to

ensure that this condition is detected must be included in either the hardware

or the software of the computer, or in a combination of the two.

When the dividend is twice as long as the divisor, the condition for overflow

can be stated as follows: A divide-overflow condition occurs if the high-

order half bits of the dividend constitute a number greater than or equal to

the divisor. Another problem associated with division is the fact that a

©Er. Anil Shah Page | 86

division by zero must be avoided. The divide-overflow condition takes care

of this condition as well. This occurs because any dividend will be greater

than or equal to a divisor which is equal to zero. Overflow condition is

usually detected when a special flip-flop is set. We will call it a divide-

overflow flip-flop and label it DVF.

The occurrence of a divide overflow can be handled in a variety of ways. In

some computers it is the responsibility of the programmers to check if DVF

is set after each divide instruction. They then can branch to a subroutine that

takes a corrective measure such as renting the data to avoid overflow. In

some older computers, the occurrence of a divide overflow stopped the

computer and this condition was referred to as a divide stop. Stopping the

operation of the computer is not recommended because it is time consuming.

The procedure in most computers is to provide an interrupt request when

DVF is set. The interrupt causes the computer to suspend the current

program and branch to a service routine to take a corrective measure. The

most common corrective measure is to remove the program and type an

error message explaining the reason why the program could not be

completed. It is then the responsibility of the user who wrote the program to

rescale the data or take any other corrective measure. The best way to avoid

a divide overflow is to use floating-point data.

Hardware Algorithm

The hardware divide algorithm is shown in the flowchart below. The

dividend is in A and Q and the divisor in B. The sign of the result is

transferred into Qs to be part of the quotient. A constant is set into the

sequence counter SC to specify the number of bits in the quotient. As in

multiplication, we assume that operands are transferred to registers from a

memory unit that has words of n bits. Since an operand must be stored with

its sign, one bit of the word will be occupied by the sign and the magnitude

will consist of n-1 bits.

A divide-overflow condition is tested by subtracting the divisor in B from

half of the bits of the dividend stored in A. If A ≥B, the divide-overflow flip-

flop DVF is set and the operation is terminated prematurely. If A <B, no

divide overflow occurs so the value of the dividend is restored by adding B

to A.

©Er. Anil Shah Page | 87

Fig. Flowchart for divide operation

©Er. Anil Shah Page | 88

The division of the magnitudes starts by shifting the dividend in AQ to the

left with the high-order bit shifted into E. If the bit shifted into E is 1, we

know that EA > B because EA consists of a 1 followed by n -1 bits while B

consists of only n - 1 bits. In this case, B must be subtracted from LA and 1

inserted into Qn for the quotient bit. Since register A is missing the high-

order bit of the dividend (which is in E), its value is EA - 2
n-1

. Adding to this

value the 2’s complement of B results in

(EA - 2
n-1

) + (2
n-1

- B) = EA – B

The carry from this addition is not transferred to E if we want E to remain a

1.

If the shift-left operation inserts a 0 into E, the divisor is subtracted by

adding its 2's complement value and the carry is transferred into E. If E = 1,

it signifies that A≥B; therefore, Qn is set to 1. If E = 0, it signifies that A < B

and the original number is restored by adding B to A. In the latter case we

leave a 0 in Qn (0 was inserted during the shift). This process is repeated

again with register A holding the partial remain-der. After n - 1 times, the

quotient magnitude is formed in register Qs and the remainder is found in

register A. The quotient sign is in Q, and the sign of the remainder in As is

the same as the original sign of the dividend.

Restoring Method

The hardware method just described is called the restoring method. The

reason for this name is that the partial remainder is restored by adding the

divisor to the negative difference.

Comparison and Non-Restoring Method

Two other methods are available for dividing numbers, the comparison

method and the non-restoring method. In the comparison method A and B

are compared prior to the subtraction operation. Then if A ≥ B, B is

subtracted from A. If A < B nothing is done. The partial remainder is shifted

left and the numbers are compared again. The comparison can be determined

prior to the subtraction by inspecting the end-carry out of the parallel-adder

prior to its transfer to register E. In the non-restoring method, B is not added

if the difference is negative but instead, the negative difference is shifted left

©Er. Anil Shah Page | 89

and then B is added. To see why this is possible consider the case when A <

B. From the flowchart in Fig. 9-11 we note that the operations performed are

A - B + B; that is, B is subtracted and then added to restore A. The next time

around the loop, this number is shifted left (or multiplied by 2) and B

subtracted again. This gives 2(A - B + B) - B = 2A - B. This result is

obtained in the non-restoring method by leaving A - B as is. The next time

around the loop, the number is shifted left and B added to give 2(A - B) + B

= 14 - B, which is the same as before. Thus, in the non-restoring method, B

is subtracted if the previous value of Q„ was a 1, but B is added if the

previous value of Qn was a 0 and no restoring of the partial remainder is

required. This process saves the step of adding the divisor if A is less than B,

but it requires special control logic to remember the previous result. The first

time the dividend is shifted, B must be subtracted. Also, if the last bit of the

quotient is 0, the partial remainder must be restored to obtain the correct

final remainder.

©Er. Anil Shah Page | 90

Chapter 7

Input-Output Organization

Introduction to Peripheral Devices

I/O subsystem

The input-output subsystem (also referred as I/O) proves an efficient mode

of communication between the central system and outside environment.

Data and programs must be entered into the computer memory for

processing and result of processing must be must be recorded or displayed

for the user

Peripheral devices

Any input/output devices connected to the computer are called peripheral

devices.

Input Devices

- Keyboard

- Card Reader

- Digitizer

- Screen Input Devices

- Touch Screen

- Light Pen

- Mouse

Input-Output Interface

• Provides a method for transferring information between internal

storage (such as memory and CPU registers) and external I/O devices

• Resolves the differences between the computer and peripheral

devices

– Peripherals - Electromechanical Devices, CPU or Memory -

Electronic Device

– Data Transfer Rate

» Peripherals - Usually slower

» CPU or Memory - Usually faster than peripherals

• Some kinds of Synchronization mechanism may be

needed

– Unit of Information

» Peripherals – Byte, Block, …

» CPU or Memory – Word

Output Devices

- CRT

- Printer (Impact, Ink Jet, Laser, Dot Matrix)

- Plotter

- Voice input devices

©Er. Anil Shah Page | 91

– Data representations may differ

I/O bus and interface modules

Fig. Connection of I/O bus to input-output devices.

I/O bus from the processor is connected to all peripheral interfaces. To

communicate with a particular device, the processor places a device address

on the address lines. Each peripheral has an interface module associated with

its interface. Functions of an interface are as below:

- Decodes the device address (device code)

- Decodes the I/O commands (operation or function code)

- Provides signals for the peripheral controller

- Synchronizes the data flow and

- Supervises the transfer rate between peripheral and CPU or Memory

Types of I/O command

Control command:-Issued to activate the peripheral and to inform it what to

do?

Status command:-Used to check the various status conditions of the interface

before a transfer is initiated

Data input command:-Cause the interface to read the data from the

peripheral and place it into the interface buffer.

©Er. Anil Shah Page | 92

Data output command:-Causes the interface to read the data from the bus

and save it into the interface buffer

I/O bus and memory bus

Memory bus is used for information transfers between CPU and the MM

(main memory). I/O bus is for information transfers between CPU and I/O

devices through their I/O interface

Physical Organizations

Many computers use a common single bus system for both memory and I/O

interface units

- Use one common bus but separate control lines for each function

- Use one common bus with common control lines for both functions

Some computer systems use two separate buses,

- One to communicate with memory and the other with I/O interfaces

I/O Bus

Communication between CPU and all interface units is via a common I/O

bus. An interface connected to a peripheral device may have a number of

data registers, a control register, and a status register. A command is passed

to the peripheral by sending to the appropriate interface register

Isolated vs. Memory mapped I/O

Isolated I/O

- Separate I/O read/write control lines in addition to memory read/write

control lines

- Separate (isolated) memory and I/O address spaces

- Distinct input and output instructions

Memory-mapped I/O

- A single set of read/write control lines (no distinction between

memory and I/O transfer)

- Memory and I/O addresses share the common address space

 reduces memory address range available

- No specific input or output instruction

 The same memory reference instructions can be used for I/O

transfers

- Considerable flexibility in handling I/O operations

©Er. Anil Shah Page | 93

I/O Interface Unit

©Er. Anil Shah Page | 94

Interface communicates with the CPU through the data bus. The chip select

and register select inputs determine the address assigned to the interface.

Control lines I/O read and write are used to specify the input and output

respectively. Bidirectional lines represent both data in and out from the CPU.

Information in each port can be assigned a meaning depending on the mode

of operation of the I/O device: Port A = Data; Port B =Command; Port C =

Status. CPU initializes (loads) each port by transferring a byte to the Control

Register. CPU can define the mode of operation of each port.

Direct Memory Access (DMA)

Types of I/O

- Program-Controlled I/O

- Interrupt-Initiated I/O

- Direct Memory Access (DMA)

Program-Controlled I/O (Input Dev to CPU)

- Continuous CPU involvement

- CPU slowed down to I/O speed

- Simple

- Least hardware

Interrupt Initiated I/O

- Polling takes valuable CPU time

- Open communication only when some data has to be passed ->

Interrupt.

- I/O interface, instead of the CPU, monitors the I/O device

Polling or Status Checking

Read status register

Read Data register,Transfer data to memory

Operation
 Complete?

Continue with
 program

= 0

= 1

yes

no

Check flag bit

flag

©Er. Anil Shah Page | 95

- When the interface determines that the I/O device is ready for data

transfer, it generates an Interrupt Request to the CPU

- Upon detecting an interrupt, CPU stops momentarily the task it is

doing, branches to the service routine to process the data transfer, and

then returns to the task it was performing

DMA (Direct Memory Access)

Large blocks of data transferred at a high speed to or from high speed

devices, magnetic drums, disks, tapes, etc.

- DMA controller (Interface) provides I/O transfer of data directly to

and from the memory and the I/O device

- CPU initializes the DMA controller by sending a memory address and

the number of words to be transferred

- Actual transfer of data is done directly between the device and

memory through DMA controller freeing CPU for other tasks

- DMA works by stealing the CPU cycles

Cycle Stealing:

- While DMA I/O takes place, CPU is also executing instructions

- DMA Controller and CPU both access Memory which causes memory

Access Conflict

- Memory Bus Controller is responsible for coordinating the activities of

all devices requesting memory access by using priority schemes

- Memory accesses by CPU and DMA Controller are interwoven; with

the top priority given to DMA Controller which is called cycle

Stealing

- CPU is usually much faster than I/O(DMA), thus CPU uses the most

of the memory cycles

- DMA Controller steals the memory cycles from CPU for those stolen

cycles, CPU remains idle

- For those slow CPU, DMA Controller may steal most of the memory

cycles which may cause CPU remain idle long time

©Er. Anil Shah Page | 96

DMA Transfer

CPU executes instruction to

 Load Memory Address Register

 Load Word Counter

 Load Function (Read or Write) to be performed

 Issue a GO command

Upon receiving a GO Command DMA performs I/O operation as follows

independently from CPU

Input

– Send read control signal to Input Device

– DMA controller collects the input from input device byte by bye and

assembles the byte into a word until word is full

BG

BR

CP
U

RD WR Addr Data

Interrupt

Random-access
 memory unit (RAM)

RD WR Addr Data

BR

BG

RD WR Addr Data

Interrupt

DS

RS DMA
 Controller

I/O
 Peripheral

 device

DMA request

DMA ack.

Read control

Write control

Data bus

Address bus

Address
 select

©Er. Anil Shah Page | 97

– Send write control signal to memory

– Increment address register (Address Reg <- Address Reg +1)

– Decrement word count (WC <- WC – 1)

– If WC = 0, then Interrupt to acknowledge done, else repeat same

process

Output

– Send read control signal to memory

– Read data from memory

– Increment address register (Address Reg <- Address Reg +1)

– Decrement word count (WC <- WC – 1)

– Disassemble the word

– Transfer data to the output device byte by byte

– If WC = 0, then Interrupt to acknowledge done, else repeat same

process

I/O Processor (I/O Channel)

Processor with direct memory access capability that communicates with I/O

devices is called I/O processor (channel). Channel accesses memory by

cycle stealing. Channel can execute a channel program stored in the main

memory. CPU initiates the channel by executing a channel I/O class

instruction and once initiated, channel operates independently of the CPU.

PD PD PD PD

Peripheral devices

I/O bus

Input-output
 processor
 (IOP)

Central
 processing

 unit (CPU)

Memory
 unit

Mem
ory
Bus

©Er. Anil Shah Page | 98

CPU-IOP Communication

The communication between CPU and IOP may take different forms,

depending on the particular computer considered. In most cases the memory

unit acts as a message center where each processor leaves information for

the other. To appreciate the operation of a typical IOP, we will illustrate by a

specific example the method by which the CPU and IOP communicate. This

is a simplified example that omits many operating details in order to provide

an overview of basic concepts.

©Er. Anil Shah Page | 99

The sequence of operations may be carried out as shown in the flowchart of

Fig. 11-20. The CPU sends an instruction to test the IOP Path. The IOP

responds by inserting a status word in memory for the CPU to check. The

bits of the status word indicate the condition of the IOP and I/0 devices, such

as TOP overload condition, device busy with another transfer, or device

ready for I/O transfer. The CPU refers to the status word in memory to

decide what to do next. If all is in order, the CPU sends the instruction to

start I/O transfer. The memory address received with this instruction tells the

IOP where to find its program.

The CPU can now continue with another program while the IOP is busy with

the I/O program. Both programs refer to memory by means of DMA

transfer. When the IOP terminates the execution of its program, it sends an

interrupt request to the CPU. The CPU responds to the interrupt by issuing

an instruction to read the status from the IOP. The IOP responds by placing

the contents of its status report into a specified memory location. The status

word indicates whether the transfer has been completed or if any errors

occurred during the transfer. From inspection of the bits in the status word,

the CPU determines if the I/O operation was completed satisfactorily

without errors.

The IOP takes care of all data transfers between several 110 units and the

memory while the CPU is processing another program. The IOP and CPU

are competing for the use of memory, so the number of devices that can be

in operation is limited by the access time of the memory. It is not possible to

saturate the memory by I/O devices in most systems, as the speed of most

devices is much slower than the CPU. However, some very fast units, such

as magnetic disks can use an appreciable number of the available memory

cycles. In that case, the speed of the CPU may deteriorate because it will

often have to wait for the IOP to conduct memory transfers.

©Er. Anil Shah Page | 100

Serial and Parallel Communication

Serial Communication

It is the process of sending data one bit at a time, sequentially, over

a communication channel or computer bus. This is in contrast to parallel

communication, where several bits are sent as a whole, on a link with several

parallel channels.

Serial communication is used for all long-haul communication and

most computer networks, where the cost

of cable and synchronization difficulties makes parallel communication

impractical. Serial computer buses are becoming more common even at

shorter distances, as improved signal integrity and transmission speeds in

newer serial technologies have begun to outweigh the parallel bus's

advantage of simplicity (no need for serializer and deserializer, or SerDes)

and to outstrip its disadvantages (clock skew, interconnect density). The

migration from PCI to PCI Express is an example.

Parallel Communication

It is a method of conveying multiple binary digits (bits) simultaneously. It

contrasts with serial communication, which conveys only a single bit at a

time; this distinction is one way of characterizing a communications link.

Parallel communication implies more than one such conductor. For example,

an 8-bit parallel channel will convey eight bits (or a byte) simultaneously,

whereas a serial channel would convey those same bits sequentially, one at a

time. If both channels operated at the same clock speed, the parallel channel

would be eight times faster. A parallel channel may have additional

conductors for other signals, such as a clock signal to pace the flow of data,

a signal to control the direction of data flow, and handshaking signals.

Data Communication Processor

A data communication Processor is an I/O processor that distributes and

collects data from many remote terminals connected through telephone and

©Er. Anil Shah Page | 101

other communication lines. It is a specialized I/O processor designed to

communicate directly with data communication networks. A communication

network may consist of any of a wide variety of devices, such as printers,

interactive display devices, digital sensors, or a remote computing facility.

With the use of a data communication processor, the computer can service

fragments of each network demand in an interspersed manner and thus have

the apparent behavior of serving many users at once. In this way the

computer is able to operate efficiently in a time-sharing environment.

The most striking difference between an I/O processor and a data

communication processor is in the way the processor communicates with the

I/O devices. An I/O processor communicates with the Peripherals through a

common I/O bus that is comprised of many data and control lines. All

peripherals share the common bus and use it to transfer information to and

from the I/O processor. A data communication processor communicates with

each terminal through a single pair of wires. Both data and control

information are trans-character received. Another procedure used in

asynchronous terminals involving a human operator is to echo the character.

The character transmitted from the keyboard to the computer is recognized

by the processor and retransmitted to the terminal printer. The operator

would realize that an error occurred during transmission if the character

printed is not the same as the character whose key he has struck.

Modes of Data Transfer

Data can be transmitted between two points in three different modes:

simplex, half-duplex, or full-duplex.

Simplex

 A simplex line carries information in one direction only. This mode is

seldom used in data communication because the receiver cannot

communicate with the transmitter to indicate the occurrence of errors.

Examples of simplex transmission are radio and television broadcasting.

©Er. Anil Shah Page | 102

Half-Duplex

 A half-duplex transmission system is one that is capable of transmitting in

both directions but data can be transmitted in only one direction at a time. A

pair of wires is needed for this mode. A common situation is for one modem

to ad as the transmitter and the other as the receiver. When transmission in

one direction is completed, the role of the modems is reversed to enable

transmission in the reverse direction. The time required to switch a half-

duplex line from one direction to the other is called the turnaround time.

Full-Duplex

 A full-duplex transmission can send and receive data in both directions

simultaneously. This can be achieved by means of a four-wire link, with a

different pair of wires dedicated to each direction of transmission.

Alternatively, a two-wire circuit can support full-duplex communication if

the frequency spectrum is subdivided into two non-overlapping frequency

bands to create separate receive and transmit channels in the same physical

pair of wires.

Protocol

The communication lines, modems, and other equipment used in the

transmission of information between two or more stations are called a data

link. The orderly transfer of information in a data link is accomplished by

means of a protocol. A data link control protocol is a set of rules that are

followed by interconnecting computers and terminals to ensure the orderly

transfer of information. The purpose of data link processor is to establish and

terminate a connection between two stations, to identify the sender and

receiver, to ensure that all messages are passed correctly without errors, and

to handle all control functions involved in a sequence of data transfers.

Protocols are divided into two major categories according to the message-

framing technique used. These are character-oriented protocol and bit-

oriented protocol.

©Er. Anil Shah Page | 103

Character-Oriented Protocol

The character-oriented protocol is based on the binary code of a character

set. The code most commonly used is ASCII (American Standard Code for

Information Interchange). It is a 7-bit code with an eighth bit used for parity.

The code has 128 characters, of which 95 are graphic characters and 33 are

control characters. The graphic characters include the upper- and lowercase

letters, the ten numerals, and a variety of special symbols. The control

characters are used for the purpose of routing data, arranging the test in a

desired format, and for the layout of the printed page. The characters that

control the transmission are called communication control characters. These

characters are listed in Table 11-4. Each character has a 7-bit code and is

referred to by a three-letter symbol. The role of each character in the control

of data transmission is stated briefly in the function column of the table.

 The SYN character serves as synchronizing agent between the transmitter

and receiver. When the 7-bit ASCII code is used with an odd-parity bit in the

most significant position, the assigned SYN character has the 8-bit code

00010110 which has the property that, upon circular shifting, it repeats itself

only after a full 8-bit cycle. When the transmitter starts sending 8-bit

characters, it sends a few characters first and then sends the actual message.

The initial continuous string of bits accepted by the receiver is checked for a

SYN character. In other words, with each clock pulse, the receiver checks

the last eight bits received. Of they do not match the bits of the SYN

character, the receiver accepts the next bit, rejects the previous high-order bit

©Er. Anil Shah Page | 104

and again checks the last eight bits received for a SYN character. This is

repeated after each clock pulse and bit received until a SYN character is

recognized. Once a SYN character is detected, the receiver has framed a

character. From here on the receiver counts every eight bits and accepts

them as a single character. Usually, the receiver checks two consecutive

SYN characters to remove any doubt that the first did not occur as a result of

a noise signal on the line Moreover, when the transmitter is idle and does not

have any message characters to send, it sends a continuous string of SYN

characters. The receiver recognizes these characters as a condition for

synchronizing the line and goes into a synchronous idle state. In this state,

the two units maintain bit and character synchronism even though no

meaningful information is communicated.

Messages are transmitted through the data link with an established format

consisting of a header field, a text field, and an error-checking field. A

typical message format for a character-oriented protocol is shown in Fig. 11-

25. The two SYN characters assure proper synchronization at the start of the

message. Following the SYN characters is the header, which starts with an

SOH (start of heading) character. The header consists of address and control

information. The STX character terminates the header and signifies the

beginning of the text transmission. The text portion of the message is

variable in length and may contain any ASCII characters except the

communication control characters. The text field is terminated with the ETX

character. The last field is a block check character (BCC) used for error

checking. It is usually either a longitudinal redundancy check (LRC) or a

cyclic redundancy check (CRC).

The receiver accepts the message and calculates its own BCC. If the BCC

transmitted does not agree with the BCC calculated by the receiver, the

receiver responds with a negative acknowledge (NAK) character. The

message is then retransmitted and checked again. Retransmission will be

typically attempted several times before it is assumed that the line is faulty.

When the transmitted BCC matches the one calculated by the receiver, the

response is a positive acknowledgment using the ACK character.

©Er. Anil Shah Page | 105

Bit-Oriented Protocol

The bit-oriented protocol does not use characters in its control field and is

independent of any particular code. It allows the transmission of serial bit

stream of any length without the implication of character boundaries.

Messages are organized in a specific format called a frame. In addition to the

information field, a frame contains address, control, and error-checking

fields. The frame boundaries are determined from a special 8-bit number

called a flag. Examples of bit-oriented protocols are SDLC (synchronous

data link control) used by IBM, HDLC (high-level data link control) adopted

by the International Standards Organization, and ADCCP (advanced data

communication control procedure) adopted by the American National

Standards Institute.

Any data communication link involves at least two participating stations.

The station that has responsibility for the data link and issues the commands

to control the link is called the primary station. The other station is a

secondary station. Bit-oriented protocols assume the presence of one

primary station and one or more secondary stations. All communication on

the data link is from the primary station to one or more secondary stations or

from a secondary station to the primary station.

The frame format for the bit-oriented protocol is shown in Fig. 11-26.

A frame starts with the 8-bit flag 01111110 followed by an address and

control sequence. The information field is not restricted in format or content

and can be of any length. The frame check field is a CRC (cyclic redundancy

check) sequence used for detecting errors in transmission. The ending flag

indicates to the receiving station that the 16 bits just received constitute the

CRC bits. The ending frame can be followed by another frame, another flag,

or a sequence of consecutive l's. When two frames follow each other, the

intervening flag is simultaneously the ending flag of the first frame and the

beginning flag of the next frame. If no information is exchanged, the

transmitter sends a series of flags to keep the line in the active state. The line

©Er. Anil Shah Page | 106

is said to be in the idle state with the occurrence of 15 or more consecutive

l's. Frames with certain control messages are sent without an information

field. A frame must have a minimum of 32 bits between two flags to

accommodate the address, control, and frame check fields. The maximum

length depends on the condition of the communication channel and its ability

to transmit long messages error-free.

To prevent a flag from occurring in the middle of a frame, the bit-oriented

protocol uses a method called zero insertion. This requires that a 0 be

inserted by the transmitting station after any succession of five continuous

1's. The receiver always removes a 0 that follows a succession of five 1's.

Thus the bit pattern 0111111 is transmitted as 01111101 and restored by the

receiver to its original value by removal of the 0 following the five 1's. As a

consequence, no pattern of 01111110 is ever transmitted between the

beginning and ending flags.

Following the flag is the address field, which is used by the primary station

to designate the secondary station address. When a secondary station

transmits a frame, the address tells the primary station which secondary

station originated the frame. An address field of eight bits can specify up to

256 addresses. Some bit-oriented protocols permit the use of an extended

address field. To do this, the least significant bit of an address byte is set to 0

if another address byte follows. A 1 in the least significant bit of a byte is

used to recognize the last address byte.

Following the address field is the control field. The control field comes in

three different formats, as shown in Fig. 11-27.

©Er. Anil Shah Page | 107

The information transfer format is used for ordinary data transmission. Each

frame transmitted in this format contains send and receive counts. A station

that transmits sequenced frames counts and numbers each frame. This count

is given by the send count Ns. A station receiving sequenced frames counts

each error-free frame that it receives. This count is given by the receive

count Nr. The Nr count advances when a frame is checked and found to be

without errors. The receiver confirms accepted numbered information

frames by returning its Nr count to the transmitting station.

The P/F bit is used by the primary station to poll a secondary station to

request that it initiate transmission. It is used by the secondary station to

indicate the final transmitted frame. Thus the P/F field is called P (poll)

when the primary station is transmitting but is designated as F (final) when a

secondary station is transmitting. Each frame sent to the secondary station

from the primary station has a P bit set to 0. When the primary station is

finished and ready for the secondary station to respond, the P bit is set to 1.

The secondary station then responds with a number of frames in which the F

bit is set to 0. When the secondary station sends the last frame, it sets the F

bit to 1. Therefore, the P/F bit is used to determine when data transmission

from a station is finished.

©Er. Anil Shah Page | 108

The supervisory format of the control field is recognized from the first two

bits being 1 and 0. The next two bits indicate the type of command. This

follows by a P/F bit and a receive sequence frame count. The frames of the

supervisory format do not carry an information field. They are used to assist

in the transfer of information in that they confirm the acceptance of

preceding frames carrying information, convey ready-or busy conditions,

and report frame numbering errors.

The unnumbered format is recognized from the first two bits being 11. The

five code bits available in this format can specify up to 32 commands and

responses. The primary station uses the control field to specify a command

for a secondary station. The secondary station uses the control field to

transmit a response to the primary station. Unnumbered-format frames are

employed for initialization of link functions, reporting procedural errors,

placing stations in a disconnected mode, and other data link control

operations.

©Er. Anil Shah Page | 109

Chapter 8

Memory Organization

Hierarchy of Memory System

Main goal of memory Hierarchy is to obtain the highest possible access

speed while minimizing the total cost of the memory system

Types of Memory

On the basis of access memory can be categorized in three types

Sequential access: - If we want to read a data from some particular position

all the data between current head position and position of the data need to be

read. Transfer time heavily depends upon location of the data

Direct Access: - If we want to read a data from some particular position all

the data between current head position and position of the data need not to

be read but head position must move from current position to position of the

data (without reading) Transfer time still depends upon location of the data

Random Access:- There is no concept of head position.. Same time is

needed to read the data from any location.

Register

Cache

Main Memory

Magnetic
Disk

Magnetic
Tape

I

n

c

r

e

a

s

e

i

n

s

p

e

e

d

I

n

c

r

e

a

s

e

i

n

S

i

z

e

©Er. Anil Shah Page | 110

Memory Hierarchy

o Registers

 In CPU

o Internal or Main memory

 May include one or more levels of cache

 ―RAM‖

o External memory

 Backing store

Primary and Secondary Memory

Main Memory

The memory which is used by the CPU to during program execution is

called main memory. It directly connected with CPU.

RAM, ROM and Cache memory are main memories.

Cache Memory

Cache is a fast small capacity memory that should hold that information

which is most likely to be accessed

Locality of Reference

- The references to memory at any given time interval tends to be

confined within localized areas. This characteristic of program is

called locality of reference.

- Temporal Locality

The information which is used currently is likely to be in use in near

future (e.g. Reuse of information in loops)

 - Spatial Locality

If a word is accessed, adjacent (near) words are likely accessed soon

(e.g. Related data items (arrays) are usually stored together;

instructions are executed sequentially)

 The property of Locality of Reference makes the Cache memory

systems work

©Er. Anil Shah Page | 111

Performance of cache

- All the memory accesses are directed first to cache

- If the word is in cache (cache hit); Access cache to provide it to CPU.

- If the word is not in cache (cache miss); Bring a block (or a line)

including that word to replace a block now in Cache

Hit Ratio - % of memory accesses satisfied by Cache memory system

Te: Effective memory access time in Cache memory system

Tc: Cache access time

Tm: Main memory access time

 Te = h Tc + (1 - h) Tm

 Example: Tc = 0.4 s, Tm = 1.2s, h = 0.85

 Te = 0.85 x 0.4 + (1 - 0.85) * 1.2 = 0.54s

Bootstrap Loader:

Bootstrap loader is a program that is stored in ROM and is used to start the

loading of OS from hard disk to RAM when power is turned on in a

computer. When a computer is turned on hardware of the computer sets PC

(program counter) to first instruction of bootstrap loader so that execution of

bootstrap loader begins when power is turned on.

RAM and ROM Chips

RAM chip

Chip select 1

Chip select 2

Read

Write

7-bit address

CS1

CS2

RD

WR

AD 7

128 x 8
 RAM

8-bit data bus

©Er. Anil Shah Page | 112

Two control signals chip select (CS) is used for enabling the RAM chip. Bar

above CS2 indicated that chip is enabled only when CS1=1 and CS2=0. RD

and WR are read and write control signals that are used to define the mode

of transfer. Bidirectional data bus indicates that data can go in and out of the

memory. Since the size of Ram of 128 word we need 7 bit address. Working

of the chip is described by the function table given below:

ROM Chip

Two control signals chip select (CS) is used for enabling the ROM chip. Bar

above CS2 indicated that chip is enabled only when CS1=1 and CS2=0. RD

and WR are not used here because ROM is read-only memory.

Unidirectional data bus indicates that data can only out of the memory. Since

the size of Ram of 512 words we need 9 bit address. Working of the chip can

also be described by using function table similar to above.

Memory Address Map

Memory address map is a process of assigning address space to a memory

system of a computer system. Suppose a memory system with 512 words of

Ram and 512 words of ROM. If we use Ram chip with 128 words we need

Chip select 1

Chip select 2

9-bit address

CS1

CS2

AD 9

512 x 8
 ROM

8-bit data bus

CS1 CS2 RD WR
 0 0 x x
 0 1 x x
 1 0 0 0
 1 0 0 1
 1 0 1 x
 1 1 x x

Memory function
 Inhibit
 Inhibit
 Inhibit
 Write
 Read
 Inhibit

State of data bus
 High-impedence
 High-impedence
 High-impedence
 Input data to RAM
 Output data from RAM
 High-impedence

©Er. Anil Shah Page | 113

to use 4 Ram chips. For this situation memory address map can be done as

given in the table below:

Bus line 8 and nine are used to make distinction between four different

RAM’s and bus line 10 is used to make distinction between RAM and ROM

chips. Address lines 1-7 are used to represent address of RAM chips because

their size is 128 words but address lines 1-9 are used to represent address of

ROM chip because size of ROM is 512 words.

Memory CPU connection

RAM and ROM chips are connected to a CPU through the data and address

buses. The low-order lines in the address bus selects the byte within the

chips and other lines in the address bus selects a particular chip through its

chip select inputs.

RAM 1
RAM 2
RAM 3
RAM 4
ROM

0000 - 007F
0080 - 00FF
0100 - 017F
0180 - 01FF
0200 - 03FF

Component
Hexa

address

0 0 0 x x x x x x x
0 0 1 x x x x x x x
0 1 0 x x x x x x x
0 1 1 x x x x x x x
1 x x x x x x x x x

10 9 8 7 6 5 4 3 2 1

Address bus

©Er. Anil Shah Page | 114

}

CS1
CS2
RD
W
R AD7

128 x 8
 RAM 1

CS1
CS2
RD
W
R AD7

128 x 8
 RAM 2

CS1
CS2
RD
W
R AD7

128 x 8
 RAM 3

CS1
CS2
RD

W
R AD7

128 x 8
 RAM 4

Decoder
3 2 1 0

WR RD 9 8 7-1 10 16-11

Address bus

Data bus

CPU

CS1
CS2

512 x 8
 ROM

AD9

1-
7
9
8

Data

Data

Data

Data

Data

©Er. Anil Shah Page | 115

Virtual Memory

Virtual memory gives the programmer the illusion that the system has a very

large memory, even though the computer actually has a relatively small

main memory

Address Space (Logical) and Memory Space(Physical)

Address Mapping

 Memory Mapping Table for Virtual Address -> Physical Address

Address Space and Memory Space are each divided into fixed size group of

words called blocks or pages

Consider 1K words group

Virtual address is divided into two parts page no. and line no. (Offset). Since

there are 8 pages, page no. requires three bits and since there are 1k =

1024words in block 10 bits are required in line no.

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Block 3

Block 2

Block 1

Block 0 Address space
N = 8K = 2

13

Memory space
M = 4K = 2

12

virtual address
(logical address) physical address

address space memory space

 address generated by programs actual main memory address

Mapping

Page no.

©Er. Anil Shah Page | 116

Page Fault

 If a page number cannot be found in the Page Table it is called page fault

Associative Memory Page Table

Suppose there are m blocks in memory n number of pages in virtual address

space. In this organization page Table requires n entry table in memory. Out

of which n-m entries of the table are empty. This is inefficient storage space

utilization. More efficient method is use a m-entry page table where page

table is made up of an Associative Memory. Associative memory is a

memory which stores both data and its actual address. Therefore if page

table is implemented by using associative memory it stores both page no.

and its associated block no. associative memory is fast because here

normally parallel search is dine on the basis of content.

1 0 1 Line number

Page no.

Argument register

1 1 1 0 0

0 0 1 1 1

0 1 0 0 0

1 0 1 0 1

1 1 0 1 0

Key register

Associative memory

Page no. Block no.

Virtual address

0 000

1 001

1 010

0 011
0 100

1 101

1 110

0 111

1

Block 0

Block 1

Block 2

Block 3

MBR

0 1 0 1 0 1 0 1 0 0 1

1 0 1 0 1 0 1 0 1 0 0 1 1

Table
 address

Presence

bit

Line number
Virtual address

Main memory
 address register

Memory page table

Main memory

11

00

01

10

01

©Er. Anil Shah Page | 117

Here key register is used for masking. That is we need to match only first

three bits.

Page Replacement

Page Replacement determines which page to displace from memory to make

room for an incoming page when no free frame is available

1. Find the location of the desired page on the backing store (secondary

storage)

2. Find a free frame

 - If there is a free frame, use it

 - Otherwise, use a page-replacement algorithm to select a victim

frame

 - Write the victim page to the backing store

3. Read the desired page into the (newly) free frame

4. Restart the user process

Page Replacement algorithms

First In First Out (FIFO)

- FIFO algorithm selects the page that has been in memory the longest

time using a queue

- Every time a page is loaded, its identification is inserted in the queue

2

f 0 v i

f v

frame

valid/
 invalid bit

page table

change to
 invalid

4
reset page
 table for
 new page

victim

1

swap
 out
 victim
 page

3

swap
 desired
 page in

backing store

physical memory

©Er. Anil Shah Page | 118

- Easy to implement:: may result in a frequent page fault

Optimal Replacement (OPT) –

- Lowest page fault rate of all algorithms

- Replace that page which will not be used for the longest period of time

Least Recently Used (LRU)

- OPT is difficult to implement since it requires future knowledge

- LRU uses the recent past as an approximation of near future.

- Replace that page which has not been used for the longest period of

time

0

7

1

7

2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 7 0 1

0 0

7

1

2

0

1

2

0

3

4

0

3

4

0

2

4

3

2

0

3

2

1

3

2

1

0

2

1

0

7

Page frames

Reference string

0

7

1

7

2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 7 0 1

0 0

7

1

2

0

1

2

0

3

2

4

3

2

0

3

2

0

1

7

0

1

Page frames

Reference string

0

7

1

7

2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 7 0 1

0 0

7

1

2

0

1

2

3

1

2

3

0

4

3

0

4

2

0

4

2

3

0

2

3

0

1

3

0

1

2

7

1

2

7

0

2

7

0

1

Page frames

Reference string

©Er. Anil Shah Page | 119

Memory Management Hardware

Basic Function

- Dynamic Storage Relocation - mapping logical memory references to

physical memory references

- Provision for sharing common information stored in memory by

different users

- Protection of information against unauthorized access

-

Segmentation

- A memory management scheme where logical address space is a

collection of segments

- Each segment has a name and a length

- Address specifies both the segment name and the offset within the

segment.

- For simplicity of implementations, segments are numbered.

Segmentation Hardware

<

Segment Table

Limit Base

(s,d)

s

Memory

+
y

n

Error

CPU

Segment Table

1000 1400
 400 6300
 400 4300
 1100 3200
 1000 4700

limit base

0
 1
 2
 3
 4

©Er. Anil Shah Page | 120

Segmented Page Mapping

Segment Page Word

Segment table Page table

+

Block Word

Logical address

Physical address

Segment Page Word

4 8 8

Block Word

12 8

Physical address format: 4096 blocks of 256 words each,
each word has 32bits

2 x 32
 Physical
 memory

2
0

Logical address format: 16 segments of 256 pages each, each page has 256 words

©Er. Anil Shah Page | 121

Example:

Memory Protection

Memory protection can be assigned to the physical address or the logical

address. The protection of memory through the physical address can be done

by assigning to each block in memory a number of protection bits that

indicate the type of access allowed to its corresponding block. Every time a

page is moved from one block to another it would be necessary to update the

block protection bits. A much better place to apply protection is in the

logical address space rather than the physical address space. This can be

done by including protection information within the segment table or

segment register of the memory management hardware.

The content of each entry in the segment table or a segment register is called

a descriptor. A typical descriptor would contain, in addition to a base

address field, one or two additional fields for protection purposes. A typical

format for a segment descriptor is shown in Fig. 12-25. The base address

Segment table

0

F

3
5

6

A3

Page table

0
0

3
5

012

3
6

000

3
7

019

3
8

053

3
9

A61

012 A3

Physical memory

0000
0
000F
F

Block 0

0120
0
012F
F

Block 12

0190
0
019F
F

 32-bit word
0197
E

Logical address (in hexadecimal)

6 0
2

7
E

Physical address = Page table [page no. + segment table [segment no]] + line no (word)

[x]  Content at location x

©Er. Anil Shah Page | 122

field gives the base of the page table address in a segmented-page

organization or the block base address in a segment register organization.

This is the address used in mapping from a logical to the physical address.

The length field gives the segment size by specifying the maximum number

of pages assigned to the segment. The length field is compared against the

page number is the logical address. A size violation occurs if the page

number falls outside the segment length boundary. Thus a given program

and its data cannot access memory not assigned to it by the operating

system.

The protection field in a segment descriptor specifies the access rights

available to the particular segment. In a segmented-page organization, each

entry in the page table may have its own protection field to describe the

access rights of each page. The protection information is set into the

descriptor by the master control program of the operating system. Some of

the access rights of interest that are used for protecting the programs residing

in memory are:

1. Full read and write privileges

 2. Read only (write protection)

 3. Execute only (program protection)

 4. System only (operating system protection)

Full read and write privileges are given to a program when it is executing its

own instructions. Write protection is useful for sharing system programs

such as utility programs and other library routines. These system programs

are stored in an area of memory where they can be shared by many users.

They can be read by all programs, but no writing is allowed. This protects

them from being changed by other programs.

©Er. Anil Shah Page | 123

The execute-only condition protects programs from being copied. It restricts

the segment to be referenced only during the instruction fetch phase but not

during the execute phase. Thus it allows the users to execute the segment

program instructions but prevents them from reading the instructions as data

for the purpose of copying their content.

Portions of the operating system will reside in memory at any given time.

These system programs must be protected by making them inaccessible to

unauthorized users. The operating system protection condition is placed in

the descriptors of all operating system programs to prevent the occasional

user from accessing operating system segments.

